DENSO

DENSO Robotics

THIRD PARTY PRODUCTS

(PROVIDER
MANUAL

Panasonic Industrial Devices SUNX

Products.”Series

Vision Sensor

MODEL.: PV Series

Introduction

This document is a user's manual for the provider to use "Panasonic Industrial Devices SUNX Vision Sensor PV Series'
connected to the DENSO robot controller RC8 series. Note that some functions may be unavailable on old PV models.
For details and handling of the connected device, refer to the user’s manual of "Panasonic Industrial Devices SUNX

Vision Sensor PV Series".

Caution: (1) Note that the functions and performance cannot be guaranteed if this product is used without
observing instructions in this manual.
(2) All products and company names mentioned are trademarks or registered trademarks of their

respective holders.

This manual covers the following product

Panasonic Industrial Devices SUNX PV200/PPV500 Series

Important

To ensure proper and safe operation, be sure to read "Safety Precautions Manual" before using the provider.

Notice to Customers

1. Risks associated with using this product

The user of this product shall be responsible for embedding and using the product (software) on a system and any result

from using it.

Contents

Introduction
Important

Notice to Customers

1. Outline of This Product (PrOVIAET).........ccuiiieiieiieeiiesiiesitesteesie ettt ettt ettt ete et e esteesaesssesssesnsesssesasesssesssesssenes 4
2. HOW 0 COMMECT ...ttt ettt ettt sttt sat e s et sat e s bt e sbe e sbe e sbe e satesatesatesatesaaesueesuaesueesueesueesueenee 6
3. Communication Settings for Robot Controller and Device Usedcccoeviieiiieiiieiiieiiieieeieceee e 7
4. Provider EXeCUtiON PTOCEAUIE.cc.uiiiriiiiiiiieieteeiect ettt sttt bt bt et et bt bt et et sbeebeeneen 8
5. CoMMANA DESCIIPLIONvveviiiiietieetiestieeitesttestee st et e et e bt e teeteesseeseesseenseenseenseenseenseenseenseansaenseensaenseenseenseenseenseenseensen 10
6. EITOT COAE OF PV PIrOVIACTiiuiiieiieiiieiiccie ettt ettt ettt ettt et et e et e enbeenseenseensaenseenseenseenseenseenseensean 91
7. OPETation PaNE] SCTEEIMccueeiuiiiiiiiiieitieiiettesit ettt ettt et et e et e bt e bt et e e st enbeenseenseenseanseenseensaenseenseenseenseenseenseensen 92
8. SAMPIE PrOZIAM.....eeiuiiiiieiieiieit ettt ettt et et e et et e e ttesttesatestaesstessaesseesseesseessseenseanseensesnseenseenseensennsennsennsenns 93

REVISION HISEOTY ...eeutieiiieiieiietiect ettt ettt ettt ettt et et e et esbeesbeesbeesbeesbeeabeanbeanbeesseesseenseenseessenseensaesssesssensaenssesssesssennns 94

THIRD PARTY PRODUCTS

1. Outline of This Product (Provider)

1.1 Target device of provider

This provider can be used only when a DENSO robot controller (RC8 series) is connected to the PV series.

)

1.2 Features of provider

This provider is provided to use the PV native commands required to access PV series in the robot program. Use of this
provider allows customers to establish communication with a robot easily without creating a communication program for

PV series. The following shows a diagram of provider embedding.

| | Provider ¥

' ! . ¥

" | Sub Main / + (Class library) 1}
Declare provider implementation | |

| IF ** = | THEN<0} Communication it

! ELSE NProwder command ¢» cireuit €

i END IF B

' | End Sub '

Using the dedicated communication

I 1
1 1
] 1
] 1
i format for PV, data transmission is !
1 1
' performed. |
1 1

THIRD PARTY PRODUCTS

1.3 Mechanism of provider

This provider offers various programs required to control the target device as a single provider. Just activate the license
to use the provider. Once provider implementation is declared on a desired program file, the functions prepared by the
provider can be used as commands in the user program. Since the provider is included in the controller, there is no need
of installation. Also, it is possible to implement multiple providers of different type. Note that a program (procedure)

cannot contain the providers of the same type.

If provider is compared to a folder,

the folder contains various commands.

Group of providers
(cannot be used yet)

Program (1)
IEmbedding ‘@ i @
&
Activation

\“m;@

@ Provider prepared in the system. This cannot be used yet.

\@ Provider after embedding. This can be used in a provider-embedded program.

Different colors are used to indicate the provider type.

Note: When the same provider exists in different programs like a in the above figure, exclusion process is required
between the programs (tasks).

* The provider is provided as a dynamic link library (abbreviated as DLL) which can be used from PacScript.

THIRD PARTY PRODUCTS

2. How to Connect

2.1 Ethernet (TCP/IP) connection example

To connect the robot controller to PV series via Ethernet (TCP/IP), use an Ethernet crossover cable. Also, when a
switching hub/router is used, use the cable suitable for the switching hub/router specifications.

. E RC8 series
2 Ethernet crossover cable or Ethernet
4
- cable & HUB
I
“@
PV series

THIRD PARTY PRODUCTS

3. Communication Settings for Robot Controller and Device
Used

Use a teach pendant to adjust the communication settings for the device to be used.

3.1 Communication via Ethernet (TCP/IP)
3.1.1 Ethernet (TCP/IP) communication settings on robot controller

Set the robot controller's IP address.
Press [F6 Setting] - [F5 Communication and Token] - [F2 Network and Permission] to display the [Communication

Settings] window. Set the IP address and subnet mask so that the robot controller and PV are within the same subnet
mask.

*, [] = ’ : f EMG PRTCT Joint WOTO

MAN w0 ATOEN "D SW

Communication Settings

(192.168.0.1) Property
‘ Permission
DHCP Disable
IP Address 192.168.0.1
Subnet mask 265.255.255.0
Gateway 0.0.0.0
MAC Address B4-B5-2F-B9-1D-18
L

Communication settings to communicate with WINCAPS.

3.1.2 Ethernet (TCP/IP) communication settings for PV
Set the PV's IP address.

THIRD PARTY PRODUCTS

Select [TOOL] — [Network]. Set the IP address and subnet mask on the [Network Settings] screen. Set the IP address and

subnet mask so that the robot controller and PV are within the same subnet mask.

[Screen of PV]

OPERATION ENVIROMMENT — TYPE INSPECTION SAVE/READ [ITOOEN

PZ Cornrnuni. _ S0 Property |Ejeu:t S0 Card | Infarrmation |

Metwor k
IP Address | 192 1es| o zo01
Calendar
subnet Mask | 255|255 255 o
Lanjuage
— Default Gateway | 0 I 0 | 0 | 0
Initialize
Device Name |ImageCheckerP\."2[JD

N0-C0-2F-BO-A8-66

3.1.3 Result output settings for PV

Select [ENVIRONMENT] — [Input/Output] — [General Output]. Configure the Ethernet general output (protocol)
settings. Refer to the Panasonic PV user's manual for details about settings.

INSPECTICN SAVESREAD TOOL SETUP MEML

Carners | Transparence | Password I_

PLC Comrnunication

Farallel 170 Serial Ethernet Ethernet

Faralle /0 CUEut “| Yes
. R T |

Serial
General Comn. General Corn. _
St | T — o
rege | T ——
Save Image Mermory Total Iurl- = “

Frint Screen
SD Card Setting

Mo ofpigits| 5 | | 5
ecimalDigit] 2 | | | 2
Comma Sep. _ Cormma 5ep. Comma Sep.

OETTE N - T

4. Provider Execution Procedure

The basic process of the provider is implementation (declaration) -> execution. This provider takes a connection
process at the time of implementation. The operation can be repeated as many times as needed. A program example is

8

THIRD PARTY PRODUCTS

shown below.

Sub Main

On Error Goto ErrorProc) 'Declare error process routine
Dim caoCtrl as Object 2) 'Declare provider variable

Dim strResult as String 3) 'Declare result acquisition variable

caoCtrl = cao.AddController("PV", "caoProv.Panasonic.PV", "", "conn=eth:192.168.0.201") (4)

"State from trigger to data receiving process" 5)

EndProc:
'End process

Exit Sub

ErrorProc:

'Error process

End Sub

(1) Declare the provider error processing routine as needed. (Connection error detection at declaration)

(2) Declare the provider implementation variable as Object type. The variable name can be specified arbitrarily.

(3) Declare the result acquisition variable. The data type depends on the command.

(4) Execute implementation with the provider declaration command cao.AddController. The parameters required for
settings vary by provider. From this point the provider commands are available using the implementation variable
caoCitrl.

(5) Now the program can be stated using the provider commands.

THIRD PARTY PRODUCTS

5. Command Description

This page contains a description of commands. The commands are classified into connection commands, PV commands,
and proprietary extension commands. For the detailed operation of PV commands, refer to the manual of

general-purpose communication command details for Panasonic PV series.

Table 5-1 List of commands

command cor:rzan d Usage PV260 Rf(f)‘er
Connection commands
ca0. AddController . E)ngie;.ments the provider to a variable and makes a connection 13
Addvariable - S;lel?::s a variable used exclusively for acquiring image or cell 14
Value — Acquires data through the variable created by AddVariable. 15
PV commands
Start %S Executes test. 16
Restar R | ot capturing anther agon 7
Xtype %X Changes the product type. 18
Memory Write %MW Saves setting data to main unit storage memory. 19
CFWrite %CW Saves setting data to SD card memory. 20
MemoryRead %MR Reads setting data from main unit storage memory. 21
CFRead %CR Reads setting data from SD card memory. 22
CancelData %CD Cancels saving or reading setting data. 23
SDSave %SS Saves storage image memory (SD memory card). 24
SDReset %SR Deletes storage image memory. 25
PrintScreen %PS Prints the screen. 26
Quit %Q Resets statistics. 27
RunManual %RM Switches between run and stop. 28
ErrorReset %E Resets error signal. 29
Cancel %CC Cancels test/processing (cancels various operations). 30
KeyEmulator %K Emulates keys. 31
Bstop %BS Keypad operations available/unavailable. 32
Beonfirm %BC Checks that keypad operations are available. 33
LayOutChange %l Changes the layout. 34
AgainTemplate %A Makes a re-entry of template. 35
ParameterRead %PR Reads parameters. 36
ParameterReadPair %PRP Reads parameter pairs (such as upper and lower limits). 37
ParameterWrite %PW Changes parameters. 38
ParameterWritePair %PWP Changes parameter pairs (such as upper and lower limits). 39
PV General communication command (Asynchronous)
StartAsync %S Executes test. 40
R N e e !

10

THIRD PARTY PRODUCTS

XTypeAsync %X Changes the product type. 42
MemoryWriteAsync %MW Saves setting data to main unit storage memory. 43
CFWriteAsync %CW Saves setting data to SD card memory. 44
MemoryReadAsync %MR Reads setting data from main unit storage memory. 45
CFReadAsync %CR Reads setting data from SD card memory. 46
CancelDataAsync %CD Cancels saving or reading setting data. 47
SDSaveAsync %SS Saves storage image memory (SD memory card). 48
SDResetAsync %SR Deletes storage image memory. 49
PrintScreenAsync %PS Prints the screen. 50
QuitAsync %Q Resets statistics. 51
RunManualAsync %RM Switches between run and stop. 52
ErrorResetAsync %E Resets error signal. 53
CancelAsync %CC Cancels test/processing (cancels various operations). 54
KeyEmulatorAsync %K Emulates keys. 55
BstopAsync %BS Keypad operations available/unavailable. 56
BconfirmAsync %BC Checks that keypad operations are available. 57
LayOutChangeAsync %l Changes the layout. 58
AgainTemplateAsync %A Makes a re-entry of template. 59
ParameterReadAsync %PR Reads parameters. 60
ParameterReadPairAsync | %PRP Reads parameter pairs (such as upper and lower limits). 61
ParameterWriteAsync %PW Changes parameters. 62
ParameterWritePairAsync | %PWP Changes parameter pairs (such as upper and lower limits). 63
Original command

Raw - Sends and receives command messages. 64
SetTimeout — Set the communication timeout period. 65
GetTimeout — Obtain the communication timeout period. 66
Original command (Asynchronous)

RawAsync — Asynchronous command message sending. 67
GetResult — Asynchronous command execution result obtainment. 68
PV260 Robot calibration command (Synchronous)

SetPoint %P= Robot coordinates acknowledged. X 69
Calibrate %CA Measurement start command. X 70
ReCalibrate %RCA Re-measurement start command. X 71
CalibrationStart %CAS Auto calibration setting start. X 72
Cubmioniad |~ | e o ot X |n
WorkSet %WCS Work detection base position reregistering. X 74
WorkReset %WRS Work detection base position reregistering start. X 75
Wokkoeind | | vk o e o i e x| 7
MoveEnd %MVE Movement completion notification. X 77
GetTeachPoint %TCD Teaching coordinate request. X 78

11

THIRD PARTY PRODUCTS

. Robot coordinates obtainment.
GetMovePoint (CalibrationStart, WorkReset-related command) X "
PV260 Robot calibration command (Asynchronous)
SetPointAsync %P= Robot coordinates acknowledged. X 80
CalibrateAsync %CA Measurement start command. X 81
ReCalibrateAsync %RCA Re-measurement start command. X 82
CalibrationStartAsync %CAS Auto calibration setting start. X 83
o . Auto calibration setting completion notification
CalibrationEndAsync reception .(CalibrationStart-related command) X 84
WorkSetAsync %WCS Work detection base position reregistering. X 85
WorkResetAsync %WRS Work detection base position reregistering start. X 86
- Work detection base position reregistration completion
WorkResetEndAsync notification reception. (WorkReset-related command) X 87
MoveEndAsync %MVE Movement completion notification. X 88
GetTeachPointAsync %TCD Teaching coordinate request. X 89
. Robot coordinates obtainment.
GetMovePointAsyne (CalibrationStart, WorkReset-related command) X o0

Commands with "X" on the PV260 column are PV260-dedicated commands.
Following abbreviated expressions are used for the command descriptions in this manual.
<Implementation variable>:<ImplVar>

<Property variable>:<PropVar>

12

THIRD PARTY PRODUCTS

cao.AddController

Usage Implements the provider to a variable and makes a connection to PV.

Syntax cao.AddController <Controller name>,<Provider name>,
<Provider running machine name>,[<Option>]

Argument:

<Controller name> Assign a name (The name is used for control).

<Provider name> "CaoProv.Panasonic.PV"

<Provider running machine name> Omit this parameter.

<Option> [PV260 parameter], [Connection parameter], [Timeout period], [[P
Address: port]

[PV260 parameter]| Specify this parameter if you use a robot calibration-related
command of PV260. This Option is available in Ver.1.12.* or
later.

0 : Do not use a robot calibration-related command (default)
1 : Use a robot calibration-related command.
"PV260=0" or "PV260=1"
[Connection parameter] "conn=eth:<IP address>"
[Timeout period] Specify the timeout period (msec) for transmission.
"Timeout[=<Time>]" Default: 500
[IP Address: port] When using several NICs, NIC can be selected by specifying IP
address at this option.
NIC will be selected automatically when omitting IP address.
Error will be returned when the IP address that is not allocated to a
local machine is specified.
Local port No. is 0 when omitting IP address.
This Option is available in Ver.2.3.* or later.
"MylIP=[<Local IP address>[:Local port No]] "

Descri ption The provider becomes effective when implemented to a variable. From this point the
implemented Object type variable is used to access the provider. (The implemented variable is
called "Implementation Variable".)

Example
Dim caoCtrl as Object
caoCtrl = cao.AddController("PV", "caoProv.Panasonic.PV", "", "PV260=1, conn=cth:192.168.0.201")
* Specify a timeout period as follows:

caoCtrl = cao.AddController("PV", "CaoProv.Panasonic.PV", ",
"PV260=1, conn=eth:192.168.0.201, Timeout = 1000")

13

THIRD PARTY PRODUCTS

<ImplVar>.AddVariable

Usage Creates a property variable used for acquiring images.
Syntax <ImplVar>.AddVariable <Specify image>, [<Option>]

Argument: <Specify image> Specify the type of image to be acquired.
@BITMAP: Camera image
@BITMAP_ MONITOR: Monitor image
<Option> None

Description An Object type variable is created to acquire image from PV.

Example
The following shows an example of acquiring an image And display it On the operation panel screen.

Dim caoCtrl As Object

Dim objBmp As Object
Dim vntResult as Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")

objBmp = caoCtrl. AddVariable("@BITMAP", "")
vntResult = objBmp. Value

14

THIRD PARTY PRODUCTS

<PropVar>.Value
Usage Acquires image data through the variable created by AddVariable.
Syntax <PropVar>.Value()

Return value: BITMAP formatted data.

Description Image data is acquired from the provider (implementation variable) through the
variable created by AddVariable.

Example
The following shows an example of acquiring an image and display it on the operation panel.

Dim caoCtrl As Object

Dim objBmp As Object
Dim vntResult as Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")

objBmp = caoCtrl. AddVariable("@BITMAP", "")
vntResult = objBmp.Value

15

THIRD PARTY PRODUCTS

<ImplVar>.Start

Usage Executes testing. The syntax for the "Execute All " or "Automatic Switch " mode is
different from that for the "Specified execution" mode. Settings of "General Result
Output" on PV series are returned as a character string for image processing result.

Syntax <ImplVar>.Start(<Block No.>)

Argument: [Block No.] Execution target block No. (integer 0 to 9)

Return value: Image processing result (character string)

Descri ption A block No. is required as an argument only when a batch trigger is used with the execution mode
set to " User-Defined".
Argument is not required for the case of " Execute All" or " Automatic Switch" mode.

Example
The following example shows how to designate the Block number 1 then, execute the inspection.

Dim caoCtrl As Object
Dim strResult As String

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
strResult = caoCtrl.Start(1) 'User-Defined

The following example shows how to execute inspection.

Dim caoCtrl As Object

Dim strResult As String

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
strResult = caoCtrl.Start 'Execute All or Automatic Switch

16

THIRD PARTY PRODUCTS

<ImplVar>.Restart

Usage Executes testing without capturing image. Different syntax is used for "Execute All "
or "Automatic Switch " mode and "Specified execution" mode.

Syntax <ImplVar>.Restart(<Block No.>)
Argument: [Block No.] Execution target block No. (integer 0 to 9)
Return value: Image processing result (character string)
Description A block No. is required as an argument only when a batch trigger is used with the execution mode

set to " User-Defined".
Argument is not required for the case of " Execute All" or " Automatic Switch" mode.

Example
The following example shows how to designate the Block number 1 then, execute the inspection.

Dim caoCtrl As Object

Dim strResult As String

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
strResult = caoCtrl.Restart(1) 'User-Defined

The following example shows how to execute re-inspection..

Dim caoCtrl As Object
Dim strResult As String

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
strResult = caoCtrl.Restart 'Execute All or Automatic Switch

17

THIRD PARTY PRODUCTS

<ImplVar>.Xtype
Usage Changes the product type.
Syntax <ImplVar>.Xtype <Product No.>

Argument: <Product No.> (Integer 0 to 255)

Description The product type is changed.

Example
The following example shows how to switch the type number to 100.

Dim caoCtrl As Object

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.Xtype 100

18

THIRD PARTY PRODUCTS

<ImplVar>.MemoryWrite

Usage Write the setting data into the PV series on-board memory.
Syntax <ImplVar>.MemoryWrite [<AreaNo.>]

Argument: <Area No.> Specify the saving area No. of SD memory card.
PV200 None
PV500 <Area No.> (integers 0 to 99)

Description Write the setting data into the PV series on-board memory.

Example
The following example shows how to write the setting data into the PV series on-board memory.
Dim caoCtrl As Object
caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl. MemoryWrite

19

THIRD PARTY PRODUCTS

<ImplVar>.CFWrite

Usage Saves the setting data in an SD memory card.
Syntax <ImplIVar>.CFWrite <Area No.>

Argument: <Area No.> Specify the saving area No. of SD memory card.
(integers 0 to 99)

Description Setting data is saved to an SD memory card after specifying the area No.

Example
The following example shows how to save the setting number into saving area No.10 of an SD memory.

Dim caoCtrl As Object

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.CFWrite 10

20

THIRD PARTY PRODUCTS

<ImplVar>.MemoryRead

Usage Reads the setting data from the main unit memory.
Syntax <ImplVar>.MemoryRead [<AreaNo.>]

Argument: <Area No.> Specify the reading area No. of SD memory card.
PV200 None
PV500 <Area No.> (integers 0 to 99)

Descri ption Setting data is read from the main unit memory after specifying the area No.

Example
The following example shows how to read out the setting data from the on-board memory.

Dim caoCtrl As Object

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.MemoryRead

21

THIRD PARTY PRODUCTS

<ImplVar>.CFRead

Usage Reads the setting data from an SD memory card.
Syntax <ImplVar>.CFRead <AreaNo>

Argument: <Area No.> Specify the reading area No. of SD memory card.
(Integer 0 to 99)

Description Setting data is read from an SD memory card after specifying the area No.

Example
The following example shows how to designate Area number 10, and then read the setting data.

Dim caoCtrl As Object

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.CFRead 10

22

THIRD PARTY PRODUCTS

<ImplVar>.CancelData
Usage Cancels saving/reading the setting data.
Syntax <ImplVar>.CancelData

Description Saving/reading process of the setting data is cancelled.

Example
The following example shows how to abort writing/reading out the setting data.

Dim caoCtrl As Object

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.CancelData

23

THIRD PARTY PRODUCTS

<ImplVar>.SDSave

Usage Saves the image memory stored in the main unit to an SD memory card.

Syntax <ImplVar>.SDSave

Description The image memory stored in the main unit is saved to an SD memory card.
An unused number on the SD memory card is searched for and used as the save destination. (The
save destination number cannot be specified.)

Example

The following example shows how to save the image memory to an SD memory card.

Dim caoCtrl As Object

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.SDSave

24

THIRD PARTY PRODUCTS

<ImplVar>.SDReset

Usage Deletes the image memory stored in the main unit.

Syntax <ImplVar>.SDReset

Description The image memory stored in the main unit is deleted.

The operation is the same as when selecting [Save/Read] -> [Delete Image Memory] in the setting
screen.

Example
The following example shows hot to delete the on-board image memory.

Dim caoCtrl As Object

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.SDReset

25

THIRD PARTY PRODUCTS

<ImplVar>.PrintScreen

Usage Captures the screen currently displayed (all items displayed) and stores it to an SD
memory card or to a PC via Ethernet interface.

Syntax <ImplVar>.PrintScreen

Description The current screen display is captured and stored to an SD memory card or PC via Ethernet
interface.
Data is saved to the location specified in [Output Destination] when selecting [ENVIRONMENT]
— [Input/Output] — [Print Screen]. The output destination cannot be specified for this command.

Example
The following example shows how to save the current displays.

Dim caoCtrl As Object

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.PrintScreen

26

THIRD PARTY PRODUCTS

<ImplVar>.Quit

Usage Clears the statistics data and scanning count.

Syntax <ImplVar>.Quit

Description The statistics data and scanning count are cleared.

Example
The following example shows how to clear the statistical data and the execution count.

Dim caoCtrl As Object

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.Quit

27

THIRD PARTY PRODUCTS

<ImplVar>.RunManual
Usage Switches the operation mode of PV series between run and stop.
Syntax <ImplVar>.RunManual(<Mode>)

Argument: <Mode> Switching between run and stop (integer).
0: Switches to run mode.
1: Switches to stop mode.
Return value: Selected mode value (integer).
0: Run
1: Stop

Description The operation mode of PV series is switched between run and stop.

Example
The following example shows how to switch RUN/STOP status of the PV series.

Dim caoCtrl As Object
Dim iResult As Integer

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
iResult = caoCtrl. RunManual(1)

28

THIRD PARTY PRODUCTS

<ImplVar>.ErrorReset
Usage Resets the Error signal.
Syntax <ImplVar>.ErrorReset

Description Resets the Error signal.

Example
The following example shows how to clear errors.

Dim caoCtrl As Object

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.ErrorReset

29

THIRD PARTY PRODUCTS

<ImplVar>. Cancel

Usage Cancels the process currently being executed.

Syntax <ImplVar>.Cancel

Description The process currently being executed is cancelled to return to the state before starting the
process.

Example
The following example shows how to cancel motion execution.

Dim caoCtrl As Object

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.Cancel

30

THIRD PARTY PRODUCTS

<ImplVar>.KeyEmulator

Usage Executes operations as keypad operations.
Syntax <ImplVar>.KeyEmulator <Shift>, <Key>
Argument: <Shift> Shift key ON/OFF (integer 0, 1).
0: OFF
1: ON

<Key> Value allocated to each key (integer 1 to 16).
See the following figure for details.

Description Operations are executed as keypad operations.
No response is made from PV series.

Example
The following shows how to operate a keypad to switch RUN/SETUP menu.

Dim caoCtrl As Object

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl. KeyEmulator 0, 16

31

THIRD PARTY PRODUCTS

<ImplVar>.Bstop

Usage Refuse/Permit the operation by a keypad on the RUN menu.
Syntax <ImplVar>.Bstop <Availability>
Argument: <Availability> Keypad operation permission (integer 0, 1).
0: Permit
1: Refuse

Description Refuse/Permit the operation by a keypad on the RUN menu.

Example
The following shows how to refuse the keypad operation.

Dim caoCtrl As Object

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.Bstop 1

32

THIRD PARTY PRODUCTS

<ImplVar>.Bconfirm
Usage Get the current state of a keypad operation permission.
Syntax <ImplVar>.Bconfirm()

Return value: Keypad operation availability status (integer 0, 1).
0: Permission
1: Refuse

Description Get the current state of a keypad operation permission.

Example
The following example shows how to get the permission state (permit) of the keypad operation.

Dim caoCtrl As Object
Dim iResult As Integer

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
iResult = caoCtrl.Bconfirm

33

THIRD PARTY PRODUCTS

<ImplVar>.LayoutChange

Usage On the RUN menu, this command is used when the layout displayed in the monitor is
switched by the signal from an external device.

Syntax <ImplVar>.LayoutChange <Layout No.>

Argument: <Layout No.> Specify with an integer (0 to 15).

Descri ption On the RUN menu, this command is used when the layout displayed in the monitor is switched by
the signal from an external device.

Example
The following example shows how to switch the layout to 1.

Dim caoCtrl As Object

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.LayoutChange 1

34

THIRD PARTY PRODUCTS

<ImplVar>.AgainTemplate

Usage Re-register the template of the smart matching checker.

Syntax <ImplVar>.AgainTemplate <Checker No.>, <Template No.>

Argument: <Checker No.> Specify with an integer (0 to 999).
<Template No.> Specify with an integer (0 to 63).

Description Re-registrable smart matching is the smart matching locating under [Checker]. The smart
matching used for the position correction or the area adjustment cannot re-register the template.

Example
The following example shows how to re-register the template of the smart matching checker.

Dim caoCtrl As Object

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl. AgainTemplate 1, 10

35

THIRD PARTY PRODUCTS

<ImplVar>.ParameterRead

Usage Reads the settings or system values from the PV series main unit.
Syntax <ImplVar>.ParameterRead(<Parameter>)

Argument: <Parameter> Specify with a character string.

Return value: Specified parameter value (character string).

Description Settings or system values are read from the PV series main unit. This command is effective

during operation only. For the data to read and command parameters, refer to the user's manual of
Panasonic PV series.

Example
The following example shows how to readout the current time.

Dim caoCtrl As Object
Dim strResult As String

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
strResult = caoCtrl.ParameterRead("SYS_TIME")

36

THIRD PARTY PRODUCTS

<ImplVar>.ParameterReadPair

Usage Reads two data items related to the settings or system values from the PV series main
unit.
Syntax <ImplVar>.ParameterReadPair (<Parameter>)

Argument: <Parameter> Specify with a character string.

Return value: Specified parameter value (Variant type).

Description Two data items related to the settings or system values are read from the PV series main unit. A

data set, such as upper and lower limits, is read. This command is effective during operation only.
For the data to read and command parameters, refer to the user's manual of Panasonic PV series.

Example
The following example shows how to read the upper/lower limits of the binary level group "A" of camera 0.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
vntResult = caoCtrl.ParameterReadPair("BLV:PAIRA")

37

THIRD PARTY PRODUCTS

<ImplVar>.ParameterWrite

Usage Changes the settings or system values of the PV series main unit.
Syntax <ImplVar>.ParameterWrite <Parameter>, <Data>

Argument: <Parameter> Specify with a character string.
<Data> Specify with a Variant type.

Description Settings or system values of the PV series main unit are changed. This command is effective

during operation only. For the data to change and command parameters, refer to the user's manual
of Panasonic PV series.

Example
The following example shows how to change the value 0 of the general-purpose register to "3.14".

Dim caoCtrl As Object

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.ParameterWrite "SYS:REGO0", 3.14

38

THIRD PARTY PRODUCTS

<ImplVar>.Parameter WritePair

Usage Changes two data items related to the settings or system values of the PV series main
unit.
Syntax <ImplVar>.ParameterWritePair <Parameter>, <Data 1>, <Data 2>

Argument: <Parameter> Specify with a character string.
<Data 1> Specify with a Variant type.
<Data 2> Specify with a Variant type.

Description Two data items related to the settings or system values of the PV series main unit are changed.

This command is effective during operation only. For the data to change and command
parameters, refer to the user's manual of Panasonic PV series.

Example

The following example shows how to change the upper/lower limit of numeric operation No.10 to upper limit
"100", lower limit "50" respectively.

Dim caoCtrl As Object

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.ParameterWritePair "BLV:PAIRA", 50, 100

39

THIRD PARTY PRODUCTS

<ImplVar>.StartAsync

Usage Start inspection asynchronously. The syntax differs depending on the execution
mode; "Execute All", "Automatic Switch", or "User Defined". To obtain and check
the return value of the command, use GetResult command. Data to obtain is the
character string type.

Syntax <ImplVar>.StartAsync <Block No.>

Argument: <Block No.> Execution target block No. (integer 0 to 9)

Description A block No. is required as an argument only when a batch trigger is used with the execution mode
set to " User-Defined".
Argument is not required for the case of " Execute All" or " Automatic Switch" mode.

Example
The following shows how to execute inspection asynchronously with specifying the Block number 1.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.StartAsync 1 ' User-Defined

'Obtain the return value of StartAsync command
vntResult = caoCtrl. GetResult

The following shows how to execute inspection asynchronously.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.StartAsync ' Execute All or Automatic Switch"

'Obtain the return value of StartAsync command
vntResult = caoCtrl.GetResult

40

THIRD PARTY PRODUCTS

<ImplVar>.ReStartAsync

Usage Execute inspection asynchronously without taking pictures (re-inspection). The
syntax differs depending on the execution mode; "Execute All", "Automatic Switch",
or "User Defined". To obtain and check the return value of the command, use
GetResult command. Data to obtain is the character string type.

Syntax <ImplVar>.RestartAsync <Block No.>

Argument: <Block No.> Execution target block No. (integer 0 to 9)

Descri ption A block No. is required as an argument only when a batch trigger is used with the execution mode
set to " User-Defined".
Argument is not required for the case of " Execute All" or " Automatic Switch" mode.

Example
The following shows how to execute inspection asynchronously with specifying the Block number 1.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.ReStartAsync 1 ' User-Defined

'Obtain the return value of RestartAsync command
vntResult = caoCtrl.GetResult

The following shows how to execute inspection asynchronously.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.ReStartAsync ' Execute All or Automatic Switch

'Obtain the return value of RestartAsync command
vntResult = caoCtrl.GetResult

41

THIRD PARTY PRODUCTS

<ImplVar>.XtypeAsync

Usage Switch a product type asynchronously. To obtain and check the return value of the
command, use GetResult command.

Syntax <ImplVar>.XtypeAsync <Product No.>

Argument: <Product No.> (Integer 0 to 255)

Descri ption Switch a product type asynchronously. To obtain and check the return value of the command, use
GetResult command.

Example
The following shows how to switch the product type number to 100.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl. XtypeAsync 100

'Obtain the return value of XtypeAsync command
vntResult = caoCtrl.GetResult

42

THIRD PARTY PRODUCTS

<ImplVar>.MemoryWriteAsync

Usage Write the setting data into PV series storage area asynchronously. To obtain and
check the return value of the command, use GetResult command.

Syntax <ImplVar>.MemoryWriteAsync [<Area No> |

Argument: <Area No.> Specify the saving area No. of SD memory card.
PV200 None
PV500 <Area No.> (integers 0 to 99)

Description Write the setting data into PV series storage area asynchronously. To obtain and check the return
value of the command, use GetResult command.

Example
The following shows how to store the setting data in the memory storage area of PV asynchronously.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl. MemoryWriteAsync

'Obtain the return value of MemoryWriteAsync command
vntResult = caoCtrl.GetResult

43

THIRD PARTY PRODUCTS

<ImplVar>.CFWriteAsync

Usage Write the setting data to an SD memory card asynchronously.
To obtain and check the return value of the command, use GetResult command.

Syntax <ImplVar>.CFWriteAsync <AreaNo.>

Argument: <Area No.> Specify the saving area No. of SD memory card.
(integers 0 to 99)

Description Write the setting data to an SD memory card asynchronously.
To obtain and check the return value of the command, use GetResult command.

Example
The following shows how to save the setting data into the Storage area number 10 of SD memory card
asynchronously.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl. CFWriteAsync 10

'Obtain the return value of CFWriteAsync command
vntResult = caoCtrl. GetResult

44

THIRD PARTY PRODUCTS

<ImplVar>.MemoryReadAsync

Usage Read the setting data from the memory of PV series asynchronously.
To obtain and check the return value of the command, use GetResult command.

Syntax <ImplVar>.MemoryReadAsync [<Area No.>]

Argument: <Area No.> Specify the reading area No. of SD memory card.
PV200 None
PV500 <Area No.> (integers 0 to 99)

Description Read the setting data from the memory of PV series asynchronously.
To obtain and check the return value of the command, use GetResult command.

Example
The following shows how to read the setting data from the memory of PV asynchronously.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.MemoryReadAsync

'Obtain the return value of MemoryReadAsync command
vntResult = caoCtrl.GetResult

45

THIRD PARTY PRODUCTS

<ImplVar>.CFReadAsync

Usage Read the setting data from an SD memory card asynchronously.
To obtain and check the return value of the command, use GetResult command.

Syntax <ImplVar>.CFReadAsync <Arca No.>

Argument: <Area No.> Specify the reading area No. of SD memory card.
(Integer 0 to 99)

Description Read the setting data from an SD memory card asynchronously.
To obtain and check the return value of the command, use GetResult command.

Example
The following shows how to specify Area number 10 and read the data asynchronously.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.CFReadAsync 10

'Obtain the return value of CFReadAsync command
vntResult = caoCtrl.GetResult

46

THIRD PARTY PRODUCTS

<ImplVar>.CancelDataAsync

Usage Cancel saving/reading of the setting data asynchronously.
To obtain and check the return value of the command, use GetResult command.

Syntax <ImplVar>.CancelDataAsync

Description Cancel saving/reading of the setting data asynchronously.
To obtain and check the return value of the command, use GetResult command.

Example
The following shows how to cancel saving/reading the setting data asynchronously.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl. CancelDataAsync

'Obtain the return value of CancelDataAsync command
vntResult = caoCtrl.GetResult

47

THIRD PARTY PRODUCTS

<ImplVar>.SDSaveAsync

Usage Save the image memory data stored in PV into an SD memory card.
To obtain and check the return value of the command, use GetResult command.

Syntax <ImplVar>.SDSaveAsync

Description Save the image memory data stored in PV into an SD memory card.
To obtain and check the return value of the command, use GetResult command.

Example
The following shows how to save the image memory data into an SD memory card asynchronously.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.SDSaveAsync

'Obtain the return value of SDSaveAsync command
vntResult = caoCtrl.GetResult

48

THIRD PARTY PRODUCTS

<ImplVar>.SDResetAsync

Usage Delete the image memory data stored in the PV series asynchronously.
To obtain and check the return value of the command, use GetResult command.

Syntax <ImplVar>.SDResetAsync

Description Delete the image memory data stored in the PV series asynchronously.
To obtain and check the return value of the command, use GetResult command.

Example
The following shows how to delete the image memory data stored in the PV series asynchronously.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.SDResetAsync

'Obtain the return value of SDResetAsync command
vntResult = caoCtrl. GetResult

49

THIRD PARTY PRODUCTS

<ImplVar>.PrintScreenAsync

Usage Capture the current displays (all items to be displayed) and then save the data into an
SD memory card or into a computer via Ethernet interface, asynchronously.
To obtain and check the return value of the command, use GetResult command.

Syntax <ImplVar>.PrintScreenAsync

Description Capture the current displays (all items to be displayed) and then save the data into an SD memory
card or into a computer via Ethernet interface, asynchronously.
To obtain and check the return value of the command, use GetResult command.

Example
The following shows how to save the current display asynchronously.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.PrintScreenAsync

'Obtain the return value of PrintScreenAsync command
vntResult = caoCtrl.GetResult

50

THIRD PARTY PRODUCTS

<ImplVar>.QuitAsync

Usage Clear the statistics data and scan count asynchronously.
To obtain and check the return value of the command, use GetResult command.

Syntax <ImplVar>.Quit Async

Description Clear the statistics data and scan count asynchronously.
To obtain and check the return value of the command, use GetResult command.

Example
The following shows how to clear the statistics data and scan data asynchronously.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.QuitAsync

'Obtain the return value of QuitAsync comand
vntResult = caoCtrl.GetResult

51

THIRD PARTY PRODUCTS

<ImplVar>.RunManualAsync

Usage

Syntax

Description

Example

Switch the PV series operation state between RUN and STOP asynchronously. To
obtain and check the return value of the command, use GetResult command. Data to
obtain is the integer type.

<ImplIVar>.RunManualAsync <Mode>

Argument: <Mode> Switching between run and stop (integer).
0: Switches to run mode.
1: Switches to stop mode.

Switch the PV series operation state between RUN and STOP asynchronously. To obtain and
check the return value of the command, use GetResult command. Data to obtain is the character
string type.

The following shows how to switch the PV series from RUN to STOP, asynchronously.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.RunManualAsync 1

'Obtain the return value of RunManualAsync command
vntResult = caoCtrl.GetResult

52

THIRD PARTY PRODUCTS

<ImplVar>.ErrorResetAsync

Usage Reset an Errror signal asynchronously. To obtain and check the return value of the
command, use GetResult command.

Syntax <ImplVar>.ErrorResetAsync

Descri ption Reset an Errror signal asynchronously. To obtain and check the return value of the command, use
GetResult command.

Example
The following shows how to clear an error asynchronously.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.ErrorResetAsync

'Obtain the return value of ErrorResetAsync command
vntResult = caoCtrl.GetResult

53

THIRD PARTY PRODUCTS

<ImplVar>. CancelAsync

Usage Cancel an ongoing motion and then go back to the state immediate before the motion
begins, asynchronously.
To obtain and check the return value of the command, use GetResult command.

Syntax <ImplVar>.CancelAsync

Descri ption Cancel an ongoing motion and then go back to the state immediate before the motion begins,
asynchronously.
To obtain and check the return value of the command, use GetResult command.

Example
The following shows how to cancel an ongoing motion asynchronously.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.CancelAsync

'Obtain the return value of Cancel Async command
vntResult = caoCtrl.GetResult

54

THIRD PARTY PRODUCTS

<ImplVar>.KeyEmulatorAsync

Usage Execute same operation as a keypad asynchronously. No response from the PV series
returns. To obtain and check the return value of the command, use GetResult
command.

Syntax <ImplVar>.KeyEmulatorAsync <Shift>, <Key>

Argument: <Shift> Shift key ON/OFF (integer 0, 1).
0: OFF
1: ON
<Key> Value allocated to each key (integer 1 to 16).
See the following figure for details.

Description Execute same operation as a keypad asynchronously. No response from the PV series returns.
To obtain and check the return value of the command, use GetResult command.

Example
The following shows how to operate the keypad to switch RUN/SETUP menu, asynchronously.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.KeyEmulatorAsync 0, 16

'Obtain the return value of KeyEmulatorAsync command
vntResult = caoCtrl.GetResult

55

THIRD PARTY PRODUCTS

<ImplVar>.BstopAsync

Usage Refuse/Permit the operation by a keypad on the RUN menu, asynchronously.
To obtain and check the return value of the command, use GetResult command.

Syntax <ImplVar>.BstopAsync <Availability>

Argument: <Availability> Availability of keypad operations (integer 0, 1).
0: Available
1: Unavailable

Descri ption Refuse/Permit the operation by a keypad on the RUN menu, asynchronously.
To obtain and check the return value of the command, use GetResult command.

Example
The following shows how to refuse the keypad operation, asynchronously.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.BstopAsync 1

'Obtain the return value of BstopAsync command
vntResult = caoCtrl.GetResult

56

THIRD PARTY PRODUCTS

<ImplVar>.BconfirmAsync

Usage Get the current state of keypad operation permission, asynchronously.
To obtain and check the return value of the command, use GetResult command.

Syntax <ImplVar>.BconfirmAsync

Descri ption Get the current state of keypad operation permission, asynchronously.
To obtain and check the return value of the command, use GetResult command.

Example

The following example shows how to get the permission state (permit) of the keypad operation,
asynchronously.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.BconfirmAsync

'Obtain the return value of BconfirmAsync command
vntResult = caoCtrl. GetResult

57

THIRD PARTY PRODUCTS

<ImplVar>.LayoutChangeAsync

Usage On the RUN menu, this command is used when the layout displayed in the monitor is
switched by the signal from an external device, asynchronously. To obtain and check
the return value of the command, use GetResult command.

Syntax <ImplVar>.LayoutChangeAsync <Layout No.>

Argument: <Layout No.> Specify with an integer (0 to 15).

Descri ption On the RUN menu, this command is used when the layout displayed in the monitor is switched by

the signal from an external device, asynchronously. To obtain and check the return value of the
command, use GetResult command.

Example
The following example shows how to switch the layout to 1, asynchronously.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.LayOutChangeAsync 1

'Obtain the return value of LayoutChangeAsync command
vntResult = caoCtrl.GetResult

58

THIRD PARTY PRODUCTS

<ImplVar>.AgainTemplateAsync

Usage Re-register the template of the smart matching checker, asynchronously. To obtain
and check the return value of the command, use GetResult command.

Syntax <ImplVar>.AgainTemplateAsync <Checker No.>, <Template No.>

Argument: <Checker No.> Specify with an integer (0 to 999).
<Template No.> Specify with an integer (0 to 63).

Description Re-registerable smart matching is the smart matching locating under [Checker]. The smart
matching used for the position correction or the area adjustment cannot re-register the template.

Example
The following example shows how to re-register the template of the smart matching checker, asynchronously.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl. AgainTemplateAsync 1, 10

'Obtain the return value of AgainTemplateAsync command
vntResult = caoCtrl.GetResult

59

THIRD PARTY PRODUCTS

<ImplVar>.ParameterReadAsync

Usage Read the setting values and the system values of the PV series on-board memory,
asynchronously. Please refer to the PV series manual of Panasonic for readable data
and each command parameters. To obtain and check the return value of the command,
use GetResult command. Data to obtain is the character string type.

Syntax <ImplVar>.ParameterReadAsync <Parameter>

Argument: <Parameter> Specify with a character string.

Descri ptlon Read the setting values and the system values of the PV series on-board memory, asynchronously.
Please refer to the PV series manual of Panasonic for readable data and each command
parameters. To obtain and check the return value of the command, use GetResult command. Data
to obtain is the character string type.

Example
The following example shows how to readout the current time, asynchronously.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.ParameterReadAsync "SYS TIME"

'Obtain the return value of ParameterReadAsync command
vntResult = caoCtrl.GetResult

60

THIRD PARTY PRODUCTS

<ImplVar>.ParameterReadPairAsync

Usage Read two data of the PV series on-board memory, asynchronously. Please refer to the
PV series manual of Panasonic for readable data and each command parameters. To
obtain and check the return value of the command, use GetResult command. Data to
obtain is the variant type.

Syntax <ImplVar>.ParameterReadPairAsync <Parameter>

Argument: <Parameter> Specify with a character string.

Description Read two data of the PV series on-board memory, asynchronously. Please refer to the PV series
manual of Panasonic for readable data and each command parameters. To obtain and check the
return value of the command, use GetResult command. Data to obtain is the character string type.
Data to obtain is the variant type.

Example
The following example shows how to read the upper/lower limits of the binary level group "A" of camera 0,
asynchronously.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.ParameterReadPairAsync "BLV:PAIRA"

'Obtain the return value of ParameterReadPairAsync command
vntResult = caoCtrl.GetResult

61

THIRD PARTY PRODUCTS

<ImplVar>.ParameterWriteAsync

Usage Change the setting data and the system value of the PV series on-board memory,
asynchronously. Please refer to the PV series manual of Panasonic for changeable
data and various command parameters. To obtain and check the return value of the
command, use GetResult command.

Syntax <ImplVar>.ParameterWriteAsync <Parameter>, <Data>

Argument: <Parameter> Specify with a character string.
<Data> Specify with a Variant type.

Description Change the setting data and the system value of the PV series on-board memory, asynchronously.
Please refer to the PV series manual of Panasonic for changeable data and various command
parameters. To obtain and check the return value of the command, use GetResult command.

Example
The following example shows how to change the value 0 of the general-purpose register to "3.14",
asynchronously.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.ParameterWriteAsync "SYS:REGO0", 3.14

'Obtain the return value of ParameterWriteAsync command
vntResult = caoCtrl. GetResult

62

THIRD PARTY PRODUCTS

<ImplVar>.ParameterWritePairAsync

Usage Change values of two data of the PV series on-board memory, asynchronously. Please
refer to the PV series manual of Panasonic for readable data and various command
parameters. To obtain and check the return value of the command, use GetResult
command.

Syntax <ImplVar>.Parameter WritePairAsync <Parameter>, <Data 1>, <Data 2>

Argument: <Parameter> Specify with a character string.
<Data 1> Specify with a Variant type.
<Data 2> Specify with a Variant type.

Descri ption Change values of two data of the PV series on-board memory, asynchronously. Please refer to the
PV series manual of Panasonic for readable data and various command parameters. To obtain and
check the return value of the command, use GetResult command.

Example
The following example shows how to asynchronously change the upper/lower limit of numeric operation
No.10 to upper limit "100", lower limit "50", respectively.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.ParameterWritePairAsync "CACO010:LPAIR", 50, 100

'Obtain the return value of Parameter WritePairAsync command
vntResult = caoCtrl.GetResult

63

THIRD PARTY PRODUCTS

<ImplVar>.Raw
Usage Transfers a command message.
Syntax <ImplVar>.Raw(<Send command message>)

Argument: <Send command message> Specify with a character string.

Return value: Received command message (character string).

Description PV series commands are transferred directly. Automatic calculation is performed for BCC (block
check code) internally.
For commands, refer to the user's manual of Panasonic PV series.

Example

The following example shows how to execute inspection with Common trigger and with the execution mode
of "All executions" or "User Defined".

Dim caoCtrl As Object
Dim strResult As String

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
strResult = caoCtrl.Raw("%S")

64

THIRD PARTY PRODUCTS

<ImplVar>. SetTimeout

Usage Specify a communication timeout period. In default, the value is the same as the one
configured in AddController.

Syntax <ImplVar>. SetTimeout < Timeout period >

Argument: < Timeout period > Specify with an integer.

Description Specify a communication timeout period. In default, the value is the same as the one configured
in AddController.

Example
The following shows how to specify the timeout period to 1 second (1000 msec.).

Dim caoCtrl As Object

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.SetTimeout 1000

65

THIRD PARTY PRODUCTS

<ImplVar>. GetTimeout

Usage Obtain the communication timeout period. In default, the value is the same as the one
configured in AddController.

Syntax <ImplVar>. GetTimeout()
Return value: Timeout period (integer).

Description Obtain the communication timeout period. In default, the value is the same as the one configured
in AddController.

Example
The following shows how to obtain the timeout period (1000 msec.).

Dim caoCtrl As Object
Dim iResult As Integer

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
iResult = caoCtrl.GetTimeout

66

THIRD PARTY PRODUCTS

<ImplVar>. RawAsync

Usage Send a command message asynchronously. BCC is calculated internally automatically.
To obtain and check the return value of the command, use GetResult command. Data
to obtain is the character string type.

Syntax <ImplVar>. RawAsync < Send command message >

Argument: <Send command message> Specify with a character string.

Description Send a command message asynchronously. BCC is calculated internally automatically. To obtain
and check the return value of the command, use GetResult command. Data to obtain is the
character string type.

Example
The following shows how to execute inspection with Common trigger, and with the execution mode of
"Execute All" or "Automatic Switch", asynchronously.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.RawAsync "%S"

'Obtain the return value of RawAsync command
vntResult = caoCtrl.GetResult

67

THIRD PARTY PRODUCTS

<ImplVar>. GetResult

Usage Wait the completion of an asynchronous command and obtain the return value. There
is no return value if the executed asynchronous command has no return value. If an
error occurs at an asynchronous command execution, the error is not issued during
the asynchronous command execution. The error is issued at the GetResult command
execution. If there is no response within the specified timeout period during
asynchronous command completion waiting, a timeout error (0x80000900) is issued.
If this timeout error occurs, set longer timeout period by using SetTimeout command
or an option of AddController.

Syntax <ImplVar>. GetResult ()

Return value: Return value of asynchronous command (Variant type).
The return value depends on the executed command.

Descri ptlon Wait the completion of an asynchronous command and obtain the return value. There is no return
value if the executed asynchronous command has no return value. If an error occurs at an
asynchronous command execution, the error is not issued during the asynchronous command
execution. The error is issued at the GetResult command execution. If there is no response within
the specified timeout period during asynchronous command completion waiting, a timeout error
(0x80000900) is issued. If this timeout error occurs, set longer timeout period by using
SetTimeout command or an option of AddController.

Example
The following shows how to obtain the return value of asynchronous inspection.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "conn=eth:192.168.0.201")
caoCtrl.StartAsync

vntResult = caoCtrl. GetResult

68

THIRD PARTY PRODUCTS

<ImplVar>. SetPoint

Usage Notify PV of robot coordinates.

Syntax <ImplVar>. SetPoint < Robot coordinate (X) >, < Robot coordinate (Y) >,
< Robot coordinate (Z) >, < Robot coordinate (Rx) >,
< Robot coordinate (Ry) >, < Robot coordinate (Rz) >,
< Robot coordinate (Fig)>

Argument: < Robot coordinate (X) > Specify with a double precision type.
< Robot coordinate (Y) > Specify with a double precision type.
< Robot coordinate (Z) > Specify with a double precision type.
< Robot coordinate (Rx) > Specify with a double precision type.
< Robot coordinate (Ry) > Specify with a double precision type.
< Robot coordinate (Rz) > Specify with a double precision type.
< Robot coordinate (Fig) > Specify with an integer type.

Description Notify PV of robot coordinates.

Example
The following shows how to notify a PV of a current robot position.

Dim caoCtrl As Object
caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "PV260=1, conn=cth:192.168.0.201")

caoCtrl.SetPoint POSX(CURPOS), POSY(CURPOS), POSZ(CURPOS), POSRX(CURPOS),
POSRY (CURPOS), POSRZ(CURPOS), FIG(CURPOS)

69

THIRD PARTY PRODUCTS

<ImplVar>. Calibrate

Usage Execute the measurement. The syntax differs depending on the execution mode;
"Execute All", or "User Defined".

Syntax <ImplVar>. Calibrate (< Calibration No >, [<Block No >])

Argument: < Calibration No > Specify with an integer type. (0 to 5)
< Block No > Specify with an integer type. (0 to 9)

Return value: Robot coordinate array (X, Y, Rz, Fig) (Variant type).

Description A block No. is required as an argument only when a batch trigger is used with the execution mode
set to " User-Defined". A block No. is not required for the case of " Execute All" mode.

Example
The following example shows how to execute measurement for the Calibration number 0.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "PV260=1, conn=eth:192.168.0.201")
vntResult = caoCtrl.Calibrate(0) ' Execute All

The following example shows how to execute measurement with specifying the Calibration number 0 and the
Block number 1.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "PV260=1, conn=eth:192.168.0.201")

vntResult = caoCtrl.Calibrate(0, 1) ' User-Defined

70

THIRD PARTY PRODUCTS

<ImplVar>. ReCalibrate

Usage

Syntax

Description

Example

Execute inspection without importing images (re-measurement). The syntax differs
depending on the Execution Mode; "Execute All" or "User Defined".

<ImplVar>. ReCalibrate (< Calibration No >, [<Block No >])

Argument: < Calibration No > Specify with an integer type. (0 to 5)
< Block No > Specify with an integer type. (0 to 9)

Return value: Robot coordinate array (X, Y, Rz, Fig) (Variant type).

A block No. is required as an argument only when a batch trigger is used with the execution mode
set to " User-Defined". A block No. is not required for the case of " Execute All" mode.

The following shows hot to execute re-measurement for the Calibration number 0.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "PV260=1, conn=eth:192.168.0.201")

vntResult = caoCtrl.ReCalibrate(0) ' Execute All
The following shows how to execute re-measurement with specifying the Calibration number 0 and the Block
number 1.

Dim caoCtrl As Object

Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "PV260=1, conn=eth:192.168.0.201")
vntResult = caoCtrl.ReCalibrate(0, 1) ' User-Defined

71

THIRD PARTY PRODUCTS

<ImplVar>. CalibrationStart

Usage Start Auto calibration. To execute Auto calibration, it is necessary to prepare a
program linked to a robot according to the CalibrationStart command.

Syntax <ImplVar>. CalibrationStart < Calibration No. >, [< Camera No. >]

Argument: < Calibration No. > Specify with an integer type. (0 to 5)
< Camera No. > Specify with an integer type. (0 to 1)

Descri ption Start Auto calibration.

If the format of PV260 is Verl.1.0 or earlier, when omitting the argument of camera No., it will be
set to “Without camera No. specified”.

Example
The following example shows how to start Auto calibration for the Calibration number 0.

Dim ICalibrationNum as long
Dim ICameraNum as long

1CalibrationNum = 0
lICameraNum = 1

‘ Notify “Without camera No. specified” (%CAS0) to PV.
caoCtrl.Execute "CalibrationStart", 1CalibrationNum

‘ Notify “With camera No. specified” (%CAS0,1) to PV.
caoCtrl.Execute "CalibrationStart", Array(ICalibrationNum, ICameraNum)

72

THIRD PARTY PRODUCTS

<ImplVar>. CalibrationEnd

Usage Obtain the notification of Auto calibration completion.

Syntax <ImplVar>. CalibrationEnd

Descri ption Obtain the notification of Auto calibration completion.

Example
The following shows how to obtain the notification of Auto calibration completion.

Dim caoCtrl As Object

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "PV260=1, conn=eth:192.168.0.201")
caoCtrl.CalibrationEnd

73

THIRD PARTY PRODUCTS

<ImplVar>. WorkSet

Usage Re-register a work detection base position (without taking pictures). If you change
the calibration configuration after the base position registration, you need to register
the base position again. You can re-calculates the base position automatically with
this command.

Syntax <ImplVar>. WorkSet

Descri ption Re-register a work detection base position (without taking pictures). If you change the calibration

configuration after the base position registration, you need to register the base position again. You
can re-calculates the base position automatically with this command.

Example
The following shows how to re-register the work detection base position.

Dim caoCtrl As Object

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "PV260=1, conn=eth:192.168.0.201")
caoCtrl. WorkSet

74

THIRD PARTY PRODUCTS

<ImplVar>. WorkReset

Usage

Syntax

Description

Example

Re-register a work detection base position (with taking pictures). If you change the
calibration configuration after the base position registration, you need to register the
base position again. If all the setting values of Number of fields, Number of markings,
and Robot position information at the base position registration are the same as the
earlier registration, you can re-calculate the base position automatically by executing
this command.

<ImplVar>. WorkReset < Work detection No >

Argument: < Work detection No > Specify with an integer type. (0 to 15)

Re-register a work detection base position (with taking pictures). If you change the calibration
configuration after the base position registration, you need to register the base position again. If
all the setting values of Number of fields, Number of markings, and Robot position information at
the base position registration are the same as the earlier registration, you can re-calculate the base
position automatically by executing this command..

The following shows how to re-register the work detection base position.

Dim caoCtrl As Object

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "PV260=1, conn=eth:192.168.0.201")
caoCtrl. WorkReset 0

75

THIRD PARTY PRODUCTS

<ImplVar>. WorkResetEnd

Usage Obtain the notification of the work detection base position re-registration completion.

Syntax <ImplVar>. WorkResetEnd

Descri ption Obtain the notification of the work detection base position re-registration completion.

Example
The following shows how to obtain the notification of the work detection base position re-registration

completion.

Dim caoCtrl As Object

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "PV260=1, conn=cth:192.168.0.201")
caoCtrl. WorkResetEnd

76

THIRD PARTY PRODUCTS

<ImplVar>. MoveEnd

Usage Notify PV of robot movement completion.

Syntax <ImplVar>. MoveEnd

Descri ption Notify PV of robot movement completion.

Example
The following shows how to notify PV of robot movement completion.

Dim caoCtrl As Object

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "PV260=1, conn=eth:192.168.0.201")
caoCtrl.MoveEnd

77

THIRD PARTY PRODUCTS

<ImplVar>. GetTeachPoint

Usage Obtain all teaching coordinate configured in PV.

Syntax <ImplVar>. GetTeachPoint ()

Return value: Robot coordinate array (X, Y, Rz, Fig) (Variant type).

Description Obtain all teaching coordinate configured in PV.

Example
The following shows how to request the teaching coordinates.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "PV260=1, conn=eth:192.168.0.201")
vntResult = caoCtrl.GetTeachPoint

78

THIRD PARTY PRODUCTS

<ImplVar>. GetMovePoint

Usage Obtain robot coordinates sent from PV during Auto calibration (CalibrationStart) or
during re-registration of the work detection base position (WorkReset).

Syntax <ImplVar>. GetMovePoint()
Return value: Robot coordinate array (X, Y, Rz, Fig) (Variant type).

Descri ption Obtain robot coordinates sent from PV during Auto calibration (CalibrationStart) or during
re-registration of the work detection base position (WorkReset).

Example
The following shows how to obtain robot coordinates sent from PV.

Dim caoCtrl As Object
Dim vntResultPos As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "PV260=1, conn=eth:192.168.0.201")
vntResultPos = caoCtrl. GetMovePoint

79

THIRD PARTY PRODUCTS

<ImplVar>. SetPointAsync

Usage Notify PV of the robot coordinates asynchronously. To obtain and check the return
value of the command, use GetResult command.

Syntax <ImplVar>. SetPointAsync <Robot coordinate (X) >,
< Robot coordinate (Y) >,
< Robot coordinate (Z) >,
< Robot coordinate (Rx) >,
<Robot coordinate (Ry) >,
< Robot coordinate (Rz) >,
< Robot coordinate (Fig)>

Argument: < Robot coordinate (X) > Specify with a double precision type.
< Robot coordinate (Y) > Specify with a double precision type.
< Robot coordinate (Z) > Specify with a double precision type.
< Robot coordinate (Rx) > Specify with a double precision type.
< Robot coordinate (Ry) > Specify with a double precision type.
< Robot coordinate (Rz) > Specify with a double precision type.
< Robot coordinate (Fig) > Specify with an integer type.

Descri ption Notify PV of the robot coordinates asynchronously. To obtain and check the return value of the
command, use GetResult command.

Example
The following shows how to notify PV of the current robot position asynchronously.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "PV260=1, conn=eth:192.168.0.201")
caoCtrl.SetPointAsync PosX(CurPos), PosY(CurPos), PosZ(CurPos), PosRx(CurPos), _
PosRy(CurPos), PosRz(CurPos), Fig(CurPos)

'Obtain the return value of SetPointAsync command
vntResult = caoCtrl.GetResult

80

THIRD PARTY PRODUCTS

<ImplVar>. CalibrateAsync

Usage Execute the measurement asynchronously. The syntax differs depending on the
execution mode; "Execute All", or "User Defined". To obtain and check the return
value of the command, use GetResult command. Data to obtain is the variant type.

Syntax <ImplVar>. CalibrateAsync < Calibration No >, <Block No >

Argument: < Calibration No > Specify with an integer type. (0 to 5)
< Block No > Specify with an integer type. (0 to 9)

Descri ption A block No. is required as an argument only when a batch trigger is used with the execution mode
set to " User-Defined". A block No. is not required for the case of " Execute All" mode.

CalibrationStart

Example
The following shows how to execute the measurement asynchronously for the Calibration number 0.

Dim caoCtrl As Object

Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "PV260=1, conn=eth:192.168.0.201")
caoCtrl.CalibrateAsync 0 ' Execute All

'Obtain the return value of CalibrateAsync command
vntResult = caoCtrl. GetResult

The following shows how to execute measurement asynchronously with specifying the Calibration number 0
and the Block number 1.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "PV260=1, conn=eth:192.168.0.201")
caoCtrl.CalibrateAsync 0, 1 ' User-Defined

'Obtain the return value of CalibrateAsync command
vntResult = caoCtrl.GetResult

81

THIRD PARTY PRODUCTS

<ImplVar>. ReCalibrateAsync

Usage Execute the measurement asynchronously without taking pictures (re-measurement).
The syntax differs depending on the execution mode; "Execute All", or "User
Defined". To obtain and check the return value of the command, use GetResult
command. Data to obtain is the variant type.

Syntax <ImplVar>. ReCalibrateAsync < Calibration No >, < Block No >

Argument: < Calibration No > Specify with an integer type. (0 to 5)
< Block No > Specify with an integer type. (0 to 9)

Descri ption A block No. is required as an argument only when a batch trigger is used with the execution mode
set to " User-Defined ". A block No. is not required for the case of " Execute All " mode.

Example
The following shows how to execute re-measurement asynchronously for the Calibration number 0.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "PV260=1, conn=eth:192.168.0.201")
caoCtrl.ReCalibrateAsync 0 ' Execute All

'Obtain the return value of ReCalibrateAsync command
vntResult = caoCtrl.GetResult

The following shows how to execute re-measurement asynchronously with specifying the Calibration number
0 and the Block number 1.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "PV260=1, conn=eth:192.168.0.201")
caoCtrl.ReCalibrateAsync 0, 1 ' User-Defined

'Obtain the return value of ReCalibrateAsync command
vntResult = caoCtrl.GetResult

82

THIRD PARTY PRODUCTS

<ImplVar>. CalibrationStartAsync

Usage Start asynchronous auto calibration. To execute Auto calibration, it is necessary to
prepare a program linked to a robot according to the CalibrationStart command.

Syntax <ImplVar>. CalibrationStartAsync < Calibration No. >, [< Camera No. >]

Argument: < Calibration No. > Specify with an integer type. (0 to 5)
< Camera No. > Specify with an integer type. (0 to 1)

Description Start asynchronous auto calibration.

If the format of PV260 is Ver1.1.0 or earlier, when omitting the argument of camera No., it will be
set to “Without camera No. specified”.
To obtain and check the return value of the command, use GetResult command.

Example
The following shows how to start Auto calibration for the Calibration number 0.

Dim ICalibrationNum as long
Dim ICameraNum as long

Dim vntResult as variant

1CalibrationNum = 0
ICameraNum = 1

‘ Notify “Without camera No. specified” (%CAS0) to PV.
caoCtrl.Execute "CalibrationStartAsync", ICalibrationNum

‘ Obtain the return value of the CalibrationStartAsync command.
vntResult = caoCtrl.Execute("GetResult")
‘ Notify “With camera No. specified” (%CAS0,1) to PV.

caoCtrl.Execute "CalibrationStartAsync", Array(ICalibrationNum, ICameraNum)

‘ Obtain the return value of the CalibrationStartAsync command.
vntResult = caoCtrl.Execute("GetResult")

¢ vntResult : No return value (Empty)

83

THIRD PARTY PRODUCTS

<ImplVar>. CalibrationEndAsync

Usage Obtain the notification of Auto calibration completion asynchronously. To obtain and
check the return value of the command, use GetResult command.

Syntax <ImplVar>. CalibrationEndAsync

Description Obtain the notification of Auto calibration completion asynchronously. To obtain and check the
return value of the command, use GetResult command.

Example
The following shows how to obtain the notification of Auto calibration asynchronously.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "PV260=1, conn=eth:192.168.0.201")
caoCtrl.CalibrationEndAsync

'Obtain the return value of CalibrationEndAsync command
vntResult = caoCtrl.GetResult

84

THIRD PARTY PRODUCTS

<ImplVar>. WorkSetAsync

Usage

Syntax

Description

Example

Re-register a work detection base position asynchronously (with taking pictures). If
you change the calibration configuration after the base position registration, you need
to register the base position again. If all the setting values of Number of fields,
Number of markings, and Robot position information at the base position registration
are the same as the earlier registration, you can re-calculate the base position
automatically by executing this command. To obtain and check the return value of the
command, use GetResult command.

<ImplVar>. WorkSetAsync

Re-register a work detection base position asynchronously (with taking pictures). If you change
the calibration configuration after the base position registration, you need to register the base
position again. If all the setting values of Number of fields, Number of markings, and Robot
position information at the base position registration are the same as the earlier registration, you
can re-calculate the base position automatically by executing this command. To obtain and check
the return value of the command, use GetResult command.

The following shows how to re-register the work detection base position asynchronously.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "PV260=1, conn=cth:192.168.0.201")
caoCtrl. WorkSetAsync

'Obtain the return value of WorkSetAsync command
vntResult = caoCtrl.GetResult

85

THIRD PARTY PRODUCTS

<ImplVar>. WorkResetAsync

Usage

Syntax

Description

Example

Re-register a work detection base position asynchronously (with taking pictures). If
you change the calibration configuration after the base position registration, you need
to register the base position again. If all the setting values of Number of fields,
Number of markings, and Robot position information at the base position registration
are the same as the earlier registration, you can re-calculate the base position
automatically by executing this command. To obtain and check the return value of the
command, use GetResult command.

<ImplVar>. WorkResetAsync < Work detection No >

Argument: < Work detection No > Specify with an integer type. (0 to 15)

Re-register a work detection base position asynchronously (with taking pictures). If you change
the calibration configuration after the base position registration, you need to register the base
position again. If all the setting values of Number of fields, Number of markings, and Robot
position information at the base position registration are the same as the earlier registration, you
can re-calculate the base position automatically by executing this command. To obtain and check
the return value of the command, use GetResult command.

The following shows how to re-register the work detection base position asynchronously.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "PV260=1, conn=eth:192.168.0.201")
caoCtrl. WorkResetAsync 0

'Obtain the return value of WorkResetAsync command
vntResult = caoCtrl.GetResult

86

THIRD PARTY PRODUCTS

<ImplVar>. WorkResetEndAsync

Usage Obtain the notification of the work detection base position re-registration completion
asynchronously. To obtain and check the return value of the command, use GetResult
command.

Syntax <ImplVar>. WorkResetEndAsync

Descri ption Obtain the notification of the work detection base position re-registration completion
asynchronously. To obtain and check the return value of the command, use GetResult command.

Example

The following shows how to obtain the notification of the work detection base position re-registration
completion asynchronously.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "PV260=1, conn=eth:192.168.0.201")
caoCtrl. WorkResetEndAsync

'Obtain the return value of WorkResetEndAsync command
vntResult = caoCtrl. GetResult

87

THIRD PARTY PRODUCTS

<ImplVar>. MoveEndAsync

Usage Notify PV of robot movement completion asynchronously. To obtain and check the
return value of the command, use GetResult command.

Syntax <ImplVar>. MoveEndAsync

Descri ption Notify PV of robot movement completion asynchronously. To obtain and check the return value
of the command, use GetResult command.

Example
The following shows how to notify PV of robot movement completion asynchronously.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "PV260=1, conn=eth:192.168.0.201")
caoCtrl.MoveEndAsync

'Obtain the return value of MoveEndAsync command
vntResult = caoCtrl.GetResult

88

THIRD PARTY PRODUCTS

<ImplVar>. GetTeachPointAsync

Usage Obtain all teaching coordinate configured in PV asynchronously. To obtain and check
the return value of the command, use GetResult command. Data to obtain is the
variant type.

Syntax <ImplVar>. GetTeachPointAsync

Descri ption Obtain all teaching coordinate configured in PV asynchronously. To obtain and check the return
value of the command, use GetResult command. Data to obtain is the variant type.

Example
The following shows how to request the teaching coordinates asynchronously.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "PV260=1, conn=eth:192.168.0.201")
caoCtrl.GetTeachPointAsync

'Obtain the return value of GetTeachPointAsync command
vntResult = caoCtrl.GetResult

89

THIRD PARTY PRODUCTS

<ImplVar>. GetMovePointAsync

Usage Obtain robot coordinates sent from the PV series during Auto calibration
(CalibrationStart) or during re-registration of the work detection base position
(WorkReset), asynchronously. To obtain and check the return value of the command,
use GetResult command. Data to obtain is the variant type.

Syntax <ImplVar>. GetMovePointAsync

Descri ption Obtain robot coordinates sent from the PV series during Auto calibration (CalibrationStart) or
during re-registration of the work detection base position (WorkReset), asynchronously. To obtain
and check the return value of the command, use GetResult command. Data to obtain is the variant

type.

Example
The following shows how to obtain robot coordinates sent from PV asynchronously.

Dim caoCtrl As Object
Dim vntResult As Variant

caoCtrl = Cao.AddController("PV", "CaoProv.Panasonic.PV", "", "PV260=1, conn=eth:192.168.0.201")
caoCtrl.GetMovePointAsync

'Obtain the return value of GetMovePointAsync command
vntResult = caoCtrl.GetResult

90

THIRD PARTY PRODUCTS

6. Error code of PV provider

The specific error code of the PV provider is created as shown below, based on the return value.
0x80100010 + Return value

For the error code of each command, refer to the PV series reference manual of Panasonic Industrial Devices SUNX.

Example: When executing Start
0x801000C8: Not executable due to stop state.

The following error codes are defined as original error codes.

Error Error number Description

E_COMMAND_EXECUTING 0x80F00000 Another command is executed during a command

execution.
E COMMAND CONNECTED 0x80F00001 A command was executed to an unconnected

(Ver.1.12.* or later) communication port

About the ORIN2 commonness error, please refer to the chapter of the error code of "ORiN2 Programming guide".

91

THIRD PARTY PRODUCTS

7. Operation Panel Screen

This provider provides the following operation panel screen. This operation panel uses the provider to check
operations, etc. after connecting to the device. See the following as an application example of the operation panel.
Displaying the operation panel establishes connection to PV (implements the provider). The communication settings
need to be configured beforehand. Closing the operation panel terminates the connection (releases the provider).

[Main screen]

ALUTOEH

MAN LD

Ve g/ o VS05043 A l Joint WOTO

Panasonic Industrial Devices SUNX

. r
2 [Execution Mode] (L 8
: + I | |
4 [Product type Switch & Execution] 2 n
Product ype > I
3
O P [- I
s I | |
. | i v 0
d o
; [Result] Initializing = [) 0
[SHIFT+CANCEL] to exit
[
SHIFT

Description Each button functions as follows.

A O

8.
9.

Switches to the "All execution" or "Branch execution" mode.

Switches to the "Specified execution" mode.

A field for setting a product for change. Range: 0 to 255

Changes to the product type set in (3).(Xtype)

A field for setting a block No. for the "Specified execution" mode. Range: 0 to 9

Executes testing according to the settings made in the steps 3 and 5. Received data appears in the data display
section (9). (Start)

Displays the processing result.

Moves up the page displayed for received data.

Displays the received data.

10. Moves down the page displayed for received data.

Note 1: When a provider implementation (initialization) is done properly, "Connected" is displayed in the field (7).

Note 2: Do not use the operation panel screen when the PV provider is used by PacScript program.

92

THIRD PARTY PRODUCTS

8. Sample Program

Sub Main
On Error Goto ErrProc 'Declare error process routine
Dim caoPV as Object 'Declare provider variable
Dim strResult as String 'Declare character-string variable
Dim pTargetPos as Position 'Declare P-type variable

takearm keep = 0

pTargetPos = P11

caoPV = cao.AddController("PV", "CaoProv.Panasonic.PV", "", "Conn=eth:192.168.0.110, Timeout = 1000™)

'Provider implementation

caoPV.Xtype 2 'Change to product 2

strResult = caoPV.Start "Trigger -> wait for process

letx pTargetPos = posx(P11) + val(strResult) 'Expand X component of received data to position data
approach p, pTargetPos, @p 20, s =100 'Go to position after correction

move I, @e pTargetPos, s =10
call Hand.Close
depart I, @p 50, s =100

EndProc: 'Normal end routine
"State necessary end process"

exit sub

ErrProc: 'Abnormal end routine

"State necessary error process"

End Sub

93

Revision History

DENSO Robot
Provider
User’s Manual

Panasonic Industrial Devices SUNX Vision Sensor PV series

Version Supported RCS8 Content

Ver.1.0.0 Ver.1.1.2 First version

Ver.1.0.1 Ver.1.3.6 and later | Addition of variable "@ ResultDisable"

Ver.1.0.2 Ver.1.3.7 and later | Correction of RunManual command
Original error (E_ COMMAND_EXECUTING) was added.
Asynchronous commands were added.

Ver.1.0.4 Ver.1.12. *

. ° Calibration commands were added.(PV260-compatible)

Timeout setting/obtainment commands were added.

Ver.1.0.5 Ver2.3. * MyIP option was added to Option string of AddController

er.2.3.

Ver.1.0.6 Modified version.

Ver.1.0.7 Ver.2.15.* Correct%on of Cal?brat%onStart command
Correction of CalibrationStartAsync command

DENSO WAVE INCORPORATED

@ No part of this manual may be duplicated or reproduced without permission.

@ The contents of this manual are subject to change without notice.

@ Every effort has been made to ensure that the information in this manual is accurate. However, should any unclear point, error or
omission be found, please contact us.

@ Please note that we will not be responsible for any effects resulted from the use of this manual regardless of the above clauses.

DENSO Robotics

THIRD PARTY PRODUCTS

DENSO WAVE INCORPORATED

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF005b514330683059308b30bb30c330c80020003a00440045004e0053004f002000430044005d0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing false
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

