

Documentation

EP23xx

EtherCAT box modules with digital inputs and outputs

Version: 3.1

Date: 2020-04-29

Table of contents

1	Fore	word		5
	1.1	Notes or	n the documentation	5
	1.2	Safety in	structions	6
	1.3	Docume	ntation issue status	7
2	Ethe	rCAT Box	c - Introduction	8
3	Prod	uct overv	riew	. 10
	3.1	Module o	overview EP23xx	. 10
	3.2	EP2308,	EP2318, EP2328	. 11
		3.2.1	EP2308, EP2318, EP2328 - Introduction	11
		3.2.2	EP2308, EP2318, EP2328 - Technical Data	
		3.2.3	EP2308, EP2318, EP2328 - Process image	
	3.3	EP2316-	-0003, EP2316-0008	. 14
		3.3.1	EP2316-0003 - Introduction	14
		3.3.2	EP2316-0008 - Introduction	15
		3.3.3	EP2316-000x - Technical Data	16
		3.3.4	EP2316-0008 - Status LEDs	17
		3.3.5	EP2316-000x - Process image	18
	3.4	EP2338-	-x00x	. 21
		3.4.1	EP2338-x00x - Introduction	21
		3.4.2	EP2338-x00x - Technical Data	22
		3.4.3	EP2338-x00x - Process image	23
	3.5	EP2339-	-0003	. 25
		3.5.1	EP2339-0003 - Introduction	25
		3.5.2	EP2339-0003 - Technical data	26
		3.5.3	EP2339-0003 - Process image	27
	3.6	EP2339-	-002x	. 29
		3.6.1	EP2339-0021 - Introduction	29
		3.6.2	EP2339-0022 - Introduction	30
		3.6.3	EP2339-002x - Technical data	31
		3.6.4	EP2339-002x - Process image	32
	3.7	EP2339-	-0042	
		3.7.1	EP2339-0042 - Introduction	33
		3.7.2	EP2339-0042 - Technical data	34
		3.7.3	EP2339-0042 - Process image	35
	3.8	EP2349-	-002x	
		3.8.1	EP2349-002x - Introduction	
		3.8.2	EP2349-002x - Technical data	38
		3.8.3	EP2349-002x - Process image	39
4	Mour	nting and	connection	40
	4.1	Mounting	g	40
		4.1.1	Dimensions EPxxxx-xx0x and EPxxxx-xx1x	40
		4.1.2	Dimensions EPxxxx-xx2x	41
		4.1.3	EPxxxx-xx42 dimensions	42

		4.1.4	Fixing	43
		4.1.5	Functional earth (FE)	44
	4.2	Connec	ctions	45
		4.2.1	Tightening torques for plug connectors	45
		4.2.2	EtherCAT	46
		4.2.3	Supply voltages	48
		4.2.4	Digital inputs and outputs	52
	4.3	UL Req	quirements	60
	4.4	ATEX n	notes	61
		4.4.1	ATEX - Special conditions	61
		4.4.2	BG2000 - EtherCAT Box protection enclosures	62
		4.4.3	ATEX Documentation	63
5	Com	missioni	ing and configuration	64
	5.1	Integrat	tion in TwinCAT	64
	5.2	Switchin	ng inductive loads	64
	5.3	Behavio	or of the outputs in case of error (only EPxx16 and EPxx17)	65
	5.4	Restorii	ng the delivery state	68
	5.5	Decomi	missioning	69
6	Appe	endix		70
	6.1	Genera	l operating conditions	70
	6.2	EtherCA	AT Box- / EtherCAT P Box - Accessories	71
	6.3	Version	identification of EtherCAT devices	72
		6.3.1	Beckhoff Identification Code (BIC)	76
		0.3.1	Decidion identification code (DIO)	70

1 Foreword

1.1 Notes on the documentation

Intended audience

This description is only intended for the use of trained specialists in control and automation engineering who are familiar with the applicable national standards.

It is essential that the documentation and the following notes and explanations are followed when installing and commissioning these components.

It is the duty of the technical personnel to use the documentation published at the respective time of each installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under development.

We reserve the right to revise and change the documentation at any time and without prior announcement.

No claims for the modification of products that have already been supplied may be made on the basis of the data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by Beckhoff Automation GmbH. Other designations used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and patents: EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702 with corresponding applications or registrations in various other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The reproduction, distribution and utilization of this document as well as the communication of its contents to others without express authorization are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.

EP23xx Version: 3.1 5

1.2 Safety instructions

Safety regulations

Please note the following safety instructions and explanations!

Product-specific safety instructions can be found on following pages or in the areas mounting, wiring, commissioning etc.

Exclusion of liability

All the components are supplied in particular hardware and software configurations appropriate for the application. Modifications to hardware or software configurations other than those described in the documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.

Personnel qualification

This description is only intended for trained specialists in control, automation and drive engineering who are familiar with the applicable national standards.

Description of instructions

In this documentation the following instructions are used.

These instructions must be read carefully and followed without fail!

▲ DANGER

Serious risk of injury!

Failure to follow this safety instruction directly endangers the life and health of persons.

⚠ WARNING

Risk of injury!

Failure to follow this safety instruction endangers the life and health of persons.

A CAUTION

Personal injuries!

Failure to follow this safety instruction can lead to injuries to persons.

NOTE

Damage to environment/equipment or data loss

Failure to follow this instruction can lead to environmental damage, equipment damage or data loss.

Tip or pointer

This symbol indicates information that contributes to better understanding.

1.3 Documentation issue status

Version	Comment
3.1	EP2339-0042: Technical data and connections updated
3.0	Documentation separated from EP2xxx 2.9.2
	• EP2339-0042 added

Firmware and hardware versions

This documentation refers to the firmware and hardware version that was applicable at the time the documentation was written.

The module features are continuously improved and developed further. Modules having earlier production statuses cannot have the same properties as modules with the latest status. However, existing properties are retained and are not changed, so that older modules can always be replaced with new ones.

The firmware and hardware version (delivery state) can be found in the batch number (D-number) printed on the side of the EtherCAT Box.

Syntax of the batch number (D-number)

D: WW YY FF HH Example with D no. 29 10 02 01:

WW - week of production (calendar week)

YY - year of production

FF - firmware version

29 - week of production 29

10 - year of production 2010

02 - firmware version 02

HH - hardware version 01 - hardware version 01

Further information on this topic: <u>Version identification of EtherCAT devices [> 72]</u>.

EP23xx Version: 3.1 7

2 EtherCAT Box - Introduction

The EtherCAT system has been extended with EtherCAT Box modules with protection class IP 67. Through the integrated EtherCAT interface the modules can be connected directly to an EtherCAT network without an additional Coupler Box. The high-performance of EtherCAT is thus maintained into each module.

The extremely low dimensions of only $126 \times 30 \times 26.5 \text{ mm}$ (h x w x d) are identical to those of the Fieldbus Box extension modules. They are thus particularly suitable for use where space is at a premium. The small mass of the EtherCAT modules facilitates applications with mobile I/O interface (e.g. on a robot arm). The EtherCAT connection is established via screened M8 connectors.

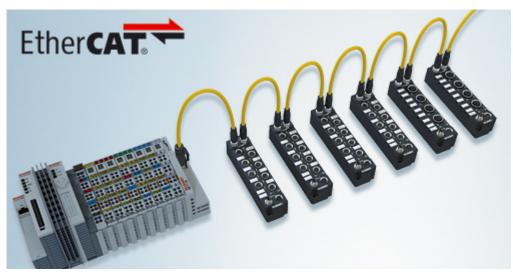


Fig. 1: EtherCAT Box Modules within an EtherCAT network

The robust design of the EtherCAT Box modules enables them to be used directly at the machine. Control cabinets and terminal boxes are now no longer required. The modules are fully sealed and therefore ideally prepared for wet, dirty or dusty conditions.

Pre-assembled cables significantly simplify EtherCAT and signal wiring. Very few wiring errors are made, so that commissioning is optimized. In addition to pre-assembled EtherCAT, power and sensor cables, field-configurable connectors and cables are available for maximum flexibility. Depending on the application, the sensors and actuators are connected through M8 or M12 connectors.

The EtherCAT modules cover the typical range of requirements for I/O signals with protection class IP67:

- digital inputs with different filters (3.0 ms or 10 μs)
- · digital outputs with 0.5 or 2 A output current
- analog inputs and outputs with 16 bit resolution
- · Thermocouple and RTD inputs
- · Stepper motor modules

XFC (eXtreme Fast Control Technology) modules, including inputs with time stamp, are also available.

Fig. 2: EtherCAT Box with M8 connections for sensors/actuators

Fig. 3: EtherCAT Box with M12 connections for sensors/actuators

Basic EtherCAT documentation

You will find a detailed description of the EtherCAT system in the Basic System Documentation for EtherCAT, which is available for download from our website (www.beckhoff.com) under Downloads.

EtherCAT XML Device Description

You will find XML files (XML Device Description Files) for Beckhoff EtherCAT modules on our website (www.beckhoff.com) under Downloads, in the Configuration Files area.

EP23xx Version: 3.1 9

3 Product overview

3.1 Module overview EP23xx

Module	Signal	Number of	Output current		Number of	Input
	connection	outputs	per output	Sum	inputs	filter
EP2308-0001 [> 11]	8 x M8	4	0.5 A	4 A	4	3.0 ms
EP2308-0002 [▶ 11]	4 x M12	4	0,5 A	4 A	4	3,0 ms
EP2316-0003 [▶ 14]	2 x ZS2001	8	0,5 A	4 A	8	10 µs
EP2316-0008 [> 15]	1 x D-Sub 25	8	0,5 A	4 A	8	10 µs
EP2318-0001 [▶ 11]	8 x M8	4	0,5 A	4 A	4	10 µs
EP2318-0002 [> 11]	4 x M12	4	0,5 A	4 A	4	10 µs
EP2328-0001 [> 11]	4 x M8	4	2,0 A	4 A	4	3,0 ms
EP2328-0002 [▶ 11]	4 x M12	4	2,0 A	4 A	4	3,0 ms
EP2338-0001 [▶ 21]	8 x M8	0 to 8	0,5 A	4 A	8 to 0	10 µs
EP2338-0002 [▶ 21]	4 x M12	0 to 8	0,5 A	4 A	8 to 0	10 µs
EP2338-1001 [▶ 21]	8 x M8	0 to 8	0,5 A	4 A	8 to 0	3,0 ms
EP2338-1002 [▶ 21]	4 x M12	0 to 8	0,5 A	4 A	8 to 0	3,0 ms
EP2339-0003 [▶ 25]	2 x ZS2001	0 to 16	0.5 A	4 A	16 to 0	3.0 ms
EP2339-0021 [▶ 29]	16 x M8	0 to 16	0,5 A	4 A	16 to 0	3,0 ms
EP2339-0022 [▶ 30]	8 x M12	0 to 16	0,5 A	4 A	16 to 0	3,0 ms
EP2339-0042 [▶ 33]	8 x M12	0 to 16	0.5 A	4 A	16 to 0	3.0 ms
EP2349-0021 [▶ 36]	16 x M8	0 to 16	0,5 A	4 A	16 to 0	10 µs
EP2349-0022 [▶ 36]	8 x M12	0 to 16	0,5 A	4 A	16 to 0	10 µs

3.2 EP2308, EP2318, EP2328

3.2.1 EP2308, EP2318, EP2328 - Introduction

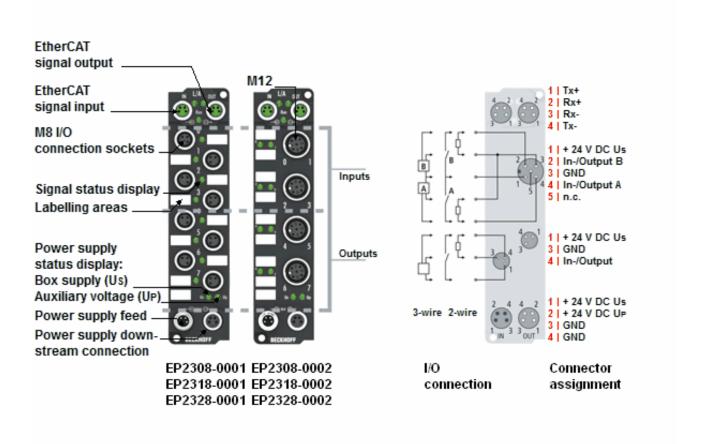


Fig. 4: EP2308, EP2318, EP2328

4 digital inputs 24 VDC and 4 digital outputs 24 VDC, Imax 0.5 A oder 2 A

The EP2308, EP2318 and EP2328 EtherCAT-Box modules combine four digital inputs and four digital outputs in one device.

The state of each signal is indicated by means of light emitting diodes. The signals are optionally connected via M8 connectors (EP23x8-0001) or M12 connectors (EP23x8-0002).

Various filter constants are available for the inputs. The outputs process load currents up to 0.5 A (EP2308, EP2318) or 2 A (EP2328) and are short-circuit proof and protected against inverse polarity.

Quick links

Technical data [▶ 12]

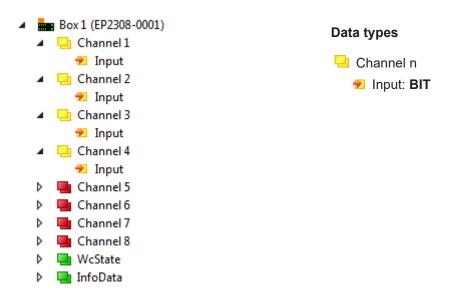
Process image [13]

Abmessungen [▶ 40]

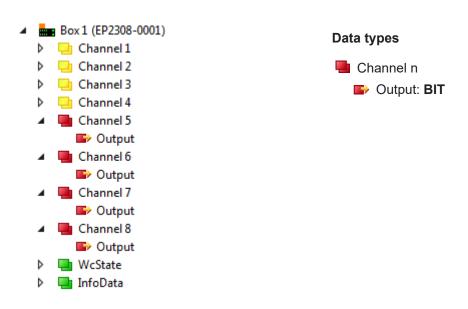
Actuator connection [▶ 52]

Sensor connection [▶ 53]

3.2.2 EP2308, EP2318, EP2328 - Technical Data


Technical data	EP2308- 0001	EP2308- 0002	EP2318- 0001	EP2318- 0002	EP2328- 0001	EP2328- 0002
Fieldbus	EtherCAT				·	
Fieldbus connection	2 x M8 sock	ket (green)				
Number of inputs	4					
Input connections	M8	M12	M8	M12	M8	M12
Nominal input voltage	24 V _{DC} (-15	%/+20%)	'		'	
Input filter	3.0 ms	3.0 ms	10 µs	10 µs	3.0 ms	3.0 ms
Signal voltage "0"	-3+5 V (E	N 61131-2,	type 3)	<u> </u>		
Signal voltage "1"	+11+30 V	(EN 61131-	-2, type 3)			
Input current	typically 3 n	nA (EN 6113	31-2, type 3)			
Sensor supply	derived fror	n control vol	tage, max. 0	.5 A total, sho	ort-circuit pro	of
Number of outputs	4					
Output connections	M8	M12	M8	M12	M8	M12
Load type	ohmic, indu	ctive, lamp l	oad		'	'
Nominal output voltage	24 V _{DC} (-15	%/+20%)				
Output current	max. 0.5 A	per channel			max. 2.0 A	per channel
					max. 4.0 A	total
Short circuit current	maximum 1	.5 A			max. 4.0 A	\
Supply of the module electronics	from the co	from the control voltage Us				
Current consumption of the module electronics	typically 12	typically 120 mA				
Output driver supply	from load v	oltage Up				
Output driver current consumption	typically 8 n	nA per chan	nel			
Power supply connection		18 plug, 4-pii n connectior	า า: 1 x M8 soc	cket, 4-pin		
Electrical isolation						
Fieldbus GND _s / GND _P	500 V no					
Ambient temperature during operation	-25+60 °C -25+55 °C conforms to cURus 0+55 °C according to ATEX					
Ambient temperature during storage	-40+85 °C					
Vibration / shock resistance	conforms to	EN 60068-	2-6 / EN 600	68-2-27		
EMC immunity / emission	conforms to	EN 61000-	6-2 / EN 610	00-6-4		
Protection class	IP65, IP66,	IP65, IP66, IP67 (conforms to EN 60529)				
Mounting position	variable					
Approvals	CE, cURus	[▶ <u>60],</u> ATEX	[<u>• 61]</u>			
-						

3.2.3 EP2308, EP2318, EP2328 - Process image


DI Inputs

Under **Channel 1** to **Channel 4** you will find the 4 digital inputs of the module (in the example the EP2308-0001).

DO Outputs

Under **Channel 5** to **Channel 8** you will find the 4 digital outputs of the module (in the example the EP2308-0001).

3.3 EP2316-0003, EP2316-0008

3.3.1 EP2316-0003 - Introduction

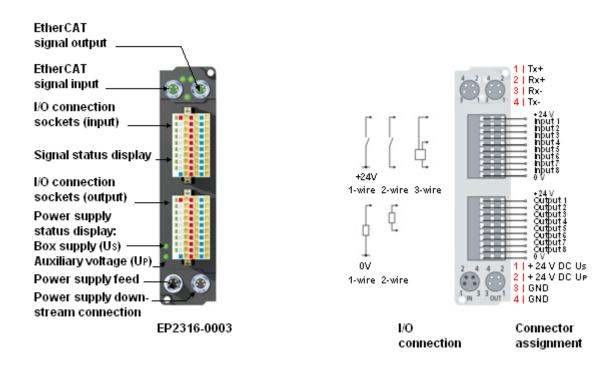


Fig. 5: EP2316-0003

8 digital inputs 24 V_{DC} , 8 digital outputs 24 V_{DC} , I_{max} 0.5 A

The EP2316 EtherCAT Box combines eight digital inputs and eight digital outputs in one device . The inputs are available with a 10 μ s filter constant.

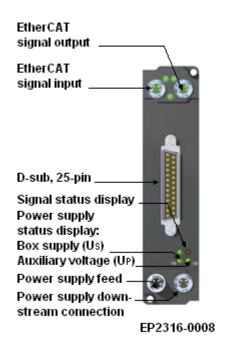
The outputs process load currents up to 0.5 A, are short-circuit proof and protected against inverse polarity. Signal state and status are indicated by LEDs.

The signal connection is made via two <u>ZS2001 connectors [> 57]</u> with spring-loaded system, optionally available with 1 or 3 pins. The module is delivered without connectors.

Quick links

Technical data [▶ 16]

Process image [▶ 18]


Dimensions [▶ 40]

Actuator connection [▶ 56]

Sensor connection [▶ 56]

3.3.2 EP2316-0008 - Introduction

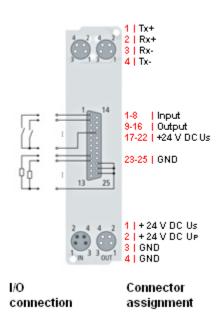


Fig. 6: EP2316-0008

8 digital inputs, 24 V_{DC} , 8 digital outputs, 24 V_{DC} , I_{max} 0.5 A

The EP2316 EtherCAT Box combines eight digital inputs and eight digital outputs in one device . The inputs are available with a 10 μ s filter constant.

The outputs process load currents up to 0.5 A, are short-circuit proof and protected against inverse polarity.

The signal connection is made through a 25-pin D-Sub socket.

The signal state and the status are displayed in groups by light emitting diodes.

Quick links

Technical data [▶ 16]

Process image [▶ 18]

Dimensions [▶ 40]

Sensor/actuator connection [▶ 59]

EP23xx Version: 3.1

3.3.3 EP2316-000x - Technical Data

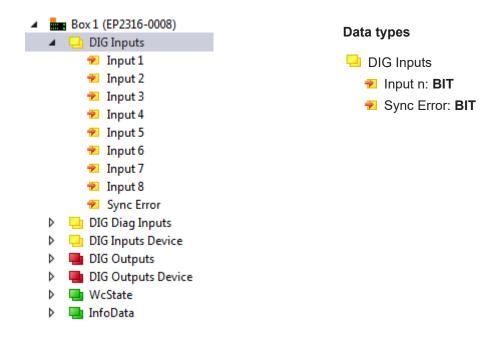
Technical data	EP2316-0003	EP2316-0008		
Fieldbus	EtherCAT			
Fieldbus connection	2 x M8 socket (green)			
Number of inputs	8			
Input connections	ZS2001 connector	25-pin D-Sub socket (pins 1 – 8)		
Nominal input voltage	24 V _{DC} (-15%/+20%)			
Input filter	10 µs			
Signal voltage "0"	-3+5 V (EN 61131-2, type 3)			
Signal voltage "1"	+11+30 V (EN 61131-2, type	3)		
Input current	typically 3 mA (EN 61131-2, typ	e 3)		
Sensor supply	derived from control voltage, mapproof	ax. 0.5 A total, short-circuit		
Number of outputs	8			
Output connections	ZS2001 connector	25-pin D-Sub socket (pins 9 – 16)		
Load type	ohmic, inductive, lamp load			
Nominal output voltage	24 V _{DC} (-15%/+20%)			
Output current	max. 0.5 A per channel, individually short-circuit proof, sum current of all outputs max. 4 A			
Short circuit current	maximum 1.5 A			
Supply of the module electronics	from the control voltage Us			
Current consumption of the module electronics	typically 120 mA			
Output driver supply	from load voltage Up			
Output driver current consumption	max. 30 mA for all channels			
Power supply connection	Feed: 1 x M8 plug, 4-pin Downstream connection: 1 x M8	3 socket, 4-pin		
Electrical isolation				
Fieldbus GND _s / GND _P	500 V no			
Ambient temperature during operation	-25+60 °C	-25+60 °C -25+55 °C conforms to cURus		
Ambient temperature during storage	-40+85 °C			
Vibration / shock resistance	conforms to EN 60068-2-6 / EN 60068-2-27			
EMC immunity / emission	conforms to EN 61000-6-2 / EN	61000-6-4		
Protection class	IP20	IP65, IP66, IP67 (conforms to EN 60529)		
Mounting position	variable			
Approvals	CE	CE, <u>cURus [▶ 60]</u>		

3.3.4 EP2316-0008 - Status LEDs

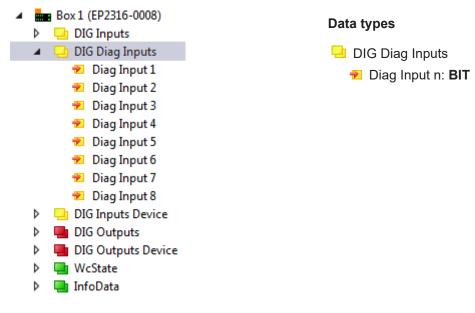
Fig. 7: EP2316-0008 - Status LEDs

LED Displays

LED	Display	Meaning
STATUS 1-8	STATUS 1-8 green illuminated A signal (24 V) is present at a least one of the inputs for channel	
STATUS 9-16	green illuminated	at least one of the outputs for channel 9-16 is set
	red illuminated	at least one output of channels 9-16 has an error
Us off The supply voltage, Us, is n		The supply voltage, Us, is not present
	green illuminated	The supply voltage, Us, is present
Up off The supply voltage, Up, is not pr		The supply voltage, Up, is not present
	green illuminated	The supply voltage, Up, is present


EP23xx Version: 3.1 17

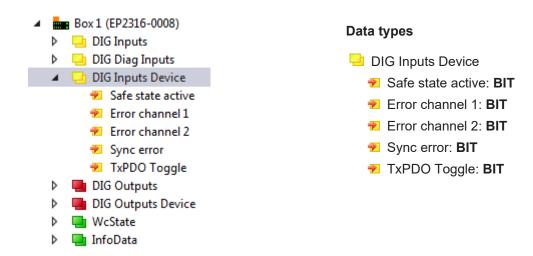
3.3.5 **EP2316-000x - Process image**


DIG Inputs

You will find the 8 digital inputs of the module under **DIG Inputs**.

DIG Diag Inputs

You will find the diagnostic inputs for the module's 8 digital outputs under DIG Diag Inputs.


Diag Input n

Indicates an error on Output n.

DIG Inputs Device

You will find the module's status inputs under **DIG Inputs Device**.

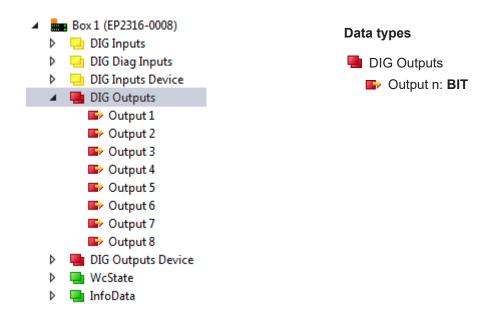
Safe state active

Indicates whether the safe state has been assumed. The display only works if the network transmits process input data, i.e. in the network states Operational (OP) and Safe-Operational (Safe-OP), but not in the network state INIT.

Error channel X

Indicates an error on channel X.

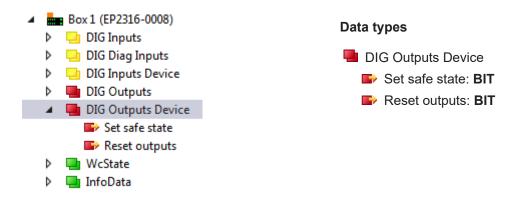
Sync Error


See EtherCAT system documentation. The EtherCAT system documentation is available on the Beckhoff homepage under Downloads.

TxPDO Toggle

See EtherCAT system documentation.

DIG Outputs


You will find the 8 digital outputs of the module under **DIG Outputs**.

DIG Outputs Device

You will find the module's control outputs under DIG Outputs Device.

Set safe state

Sets the module to the safe state.

Reset outputs

Resets the error bits "Error channel X" of the module. The outputs are reactivated.

3.4 EP2338-x00x

3.4.1 **EP2338-x00x - Introduction**

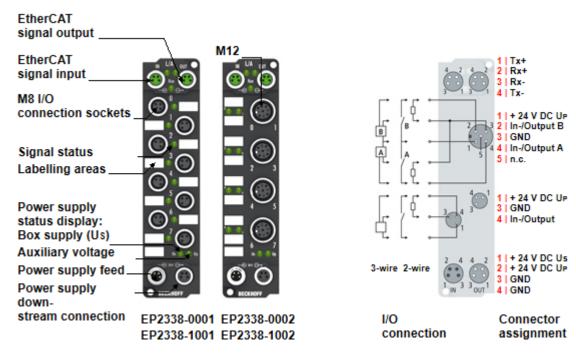


Fig. 8: EP2338-x00x

8 digital inputs or outputs, 24 V_{DC}

The EP2338 EtherCAT Box has eight digital channels, each of which can optionally be operated as an input or as an output. A configuration whether a channel is to be used as input or output is not required; the input circuit is internally fixed to the output driver so that a set output is automatically displayed in the input process image.

The outputs process load currents up to 0.5 A, are short-circuit proof and protected against inverse polarity. The inputs have a filter constant of 10 μ s (EP2338-0001, EP2338-0002) or a filter constant of 3 ms (EP2338-1001, EP2338-1002). The state of each signal is indicated by means of light emitting diodes. The signals are optionally connected via M8 (EP2338-x001) or M12 connectors (EP2338-x002).

Supply of the connected sensors from U_P, not from U_S

In contrast to many other modules, the EP2338 EtherCAT Box supplies digital sensors from the U_{P} peripheral voltage and not from the U_{S} control voltage! Nevertheless, an overload of the sensor supply (current > 0.5 A) is also indicated here by the illuminated red U_{S} LED.

NOTE

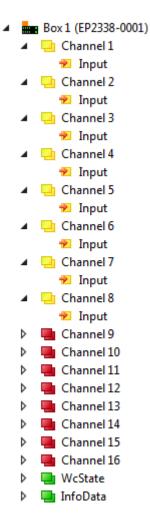
For switch-off in the event of a fault, do not supply sensors externally

If the design of your installation is such that the power supply voltage U_{P} is switched off in the event of a fault, you must not power the connected sensors externally, but only through EP2338! Otherwise, when the U_{P} energy is switched off, EP2338 can continue to draw energy from the external sensor supply, and the outputs will not be switched off.

Quick links

Technical data [▶ 22]
Process image [▶ 23]
Dimensions [▶ 40]
Sensor/actuator connection [▶ 54]

3.4.2 EP2338-x00x - Technical Data


Technical data	EP2338-0001	EP2338-1001	EP2338-0002	EP2338-1002		
Fieldbus	EtherCAT					
Fieldbus connection	2 x M8 socket (green)					
Number of outputs	8 to 0	8 to 0				
Output connections	M8		M12			
Load type	ohmic, inductive,	lamp load				
Nominal output voltage	24 V _{DC} (-15%/+20)%)				
Output current	max. 0.5 A per ch	nannel				
Short circuit current	maximum 1.5 A					
Supply of the module electronics	from the control v	oltage Us				
Current consumption of the module electronics	typically 120 mA					
Output driver supply	from load voltage	Up				
Output driver current consumption	typically 20 mA					
Number of inputs	0 to 8					
Input connections	M8		M12			
Nominal input voltage	24 V _{DC} (-15%/+20)%)				
Input filter	10 µs	3 ms	10 µs	3 ms		
Signal voltage "0"	-3+5 V (EN 611	31-2, type 3)				
Signal voltage "1"	+11+30 V (EN 61131-2, type 3)					
Input current	typically 3 mA (EN 61131-2, type 3)					
Sensor supply	from the peripher	al voltage Up, max	x. 0.5 A, total short	t-circuit proof		
Power supply connection	Feed: 1 x M8 plug Downstream con	g, 4-pin nection: 1 x M8 so	cket, 4-pin			
Electrical isolation						
Fieldbus GND _s / GND _P	500 V no					
Ambient temperature during operation	-25 +60 °C -25 +55 °C con 0 +55 °C accord	_				
Ambient temperature during storage	-40 +85 °C					
Vibration / shock resistance	conforms to EN 60068-2-6 / EN 60068-2-27					
EMC immunity / emission	conforms to EN 6	1000-6-2 / EN 610	000-6-4			
Protection class	IP65, IP66, IP67	(conforms to EN 6	0529)			
Mounting position	variable					
Approvals	CE, <u>cURus [▶ 60]</u> ,	<u>ATEX [▶ 61]</u>				

3.4.3 **EP2338-x00x - Process image**

DI Inputs

Under **Channel 1** to **Channel 8** you will find the 8 digital inputs of the module (in the example the EP2338-0001).

Input: BIT

DO Outputs

Under **Channel 1** to **Channel 8** you will find the 8 digital outputs of the module (in the example the EP2338-0001).

■ Box 1 (EP2338-0001) Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 Channel 7 Channel 8 Channel 9 Output Channel 10 Output Channel 11 Output Channel 12 Output Channel 13 Output Channel 14 Output Channel 15 Output Channel 16 Output

WcState
InfoData

Data types

- Channel n
 - Output: BIT

3.5 EP2339-0003

3.5.1 EP2339-0003 - Introduction

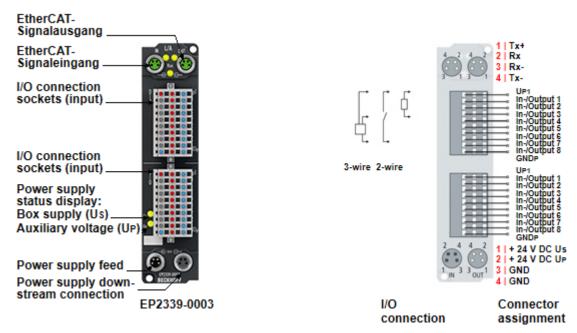


Fig. 9: EP2339-0003

16-channel digital input or output 24 V_{DC}

The EP2339-0003 EtherCAT Box has 16 digital channels, each of which can optionally be operated as an input or as an output. A configuration for using a channel as input or output is not necessary; the input circuit is internally connected to the output driver, so that a set output is displayed automatically in the input process image.

A filter constant of 3.0 ms is available for the inputs. The outputs are short-circuit proof and protected against inverse polarity. They handle load currents of up to 0.5 A each, although the total current is limited to 4 A. The state of each signal is indicated by means of light emitting diodes on the connectors. For the signal connection connectors with a spring-loaded system are used, optionally available with 1 or 3 pins. The module is supplied without connectors. The sensors are powered by the load voltage $U_{\rm P}$.

Quick links

Technical data [▶ 26]

Process image [▶ 27]

Dimensions [▶ 40]

Signal connection [▶ 56]

EP23xx Version: 3.1 25

3.5.2 EP2339-0003 - Technical data

Technical data	EP2339-0003
Fieldbus	EtherCAT
Fieldbus connection	2 x M8 socket (green)
Distributed Clocks	yes
Cable length for inputs/outputs	max. 30 m
Number of outputs	0 to 16
Output connections	2x ZS2001
Load type	ohmic, inductive, lamp load
Nominal output voltage	24 V _{DC} (-15%/+20%)
Output current	max. 0,5 A per channel, short-circuit proof
	max. 4.0 A total
Short circuit current	max. 1,5 A
Supply of the module electronics	from the control voltage Us
Current consumption of the module electronics	typically 120 mA
Output driver supply	from the load voltage U _P
Output driver current consumption	typically 20 mA + load
Input connections	2x ZS2001
Number of inputs	0 to 16
Nominal input voltage	24 V _{DC} (-15%/+20%)
Input filter	3,0 ms
Signal voltage "0"	-3+5 V (EN 61131-2, type 3)
Signal voltage "1"	+11+30 V (EN 61131-2, type 3)
Input current	typically 5 mA at 24 V
Sensor supply	from the peripheral voltage U _P , max. 0,5 A, total short-circuit proof
Power supply connection	Feed: 1 x M8 plug, 4-pin
	Downstream connection: 1 x M8 socket, 4-pin
Electrical isolation	
Fieldbus	500 V
GND _s / GND _P	no
Ambient temperature during operation	-25 +60 °C
	-25 +55 °C conforms to cURus
Ambient temperature during storage	-40 +85 °C
Vibration / shock resistance	conforms to EN 60068-2-6 / EN 60068-2-27
EMC immunity / emission	conforms to EN 61000-6-2 / EN 61000-6-4
Protection class	IP20
Mounting position	variable
Approvals	CE, <u>cURus [▶ 60]</u>

3.5.3 EP2339-0003 - Process image

Box 1 (EP2339-0003)

DI Inputs Channel 1

DI Inputs Channel 2

DO Outputs Channel 1

DO Outputs Channel 2

WcState

InfoData

Fig. 10: EP2339-0003 - Process image

DI Inputs Channel n

DI Inputs Channel 1

Input 1

Input 2

Input 3

Input 4

Input 5

Input 6

Input 7

Input 8

Sync error

TxPDO State

TxPDO Toggle

DI Inputs Channel 2

Input 1

Input 2

Input 3

Input 4

Input 5

Input 6

Input 7

Input 8

Sync errorTxPDO State

TxPDO Toggle

Input x

Digital inputs. Data type: BIT.

Sync error

This bit is only relevant in Distributed Clocks mode.

It is TRUE if a synchronization error occurred during the elapsed EtherCAT cycle.

TxPDO State

Validity of the input data. This bit is TRUE if the input data could not be read correctly due to an error.

TxPDO Toggle

This bit is inverted each time an input data update occurs.

DO Outputs Channel n

- DO Outputs Channel 1
 - Output 1
 - Output 2
 - Output 3
 - Output 4
 - Output 5
 - Output 6
 - Output 7
 - Output 8
- DO Outputs Channel 2
 - Output 1
 - Output 2
 - Output 3
 - Output 4
 - Output 5
 - Output 6
 - Output 7
 - Output 8

Output *x*

Digital outputs. Data type: BIT.

3.6 EP2339-002x

3.6.1 EP2339-0021 - Introduction

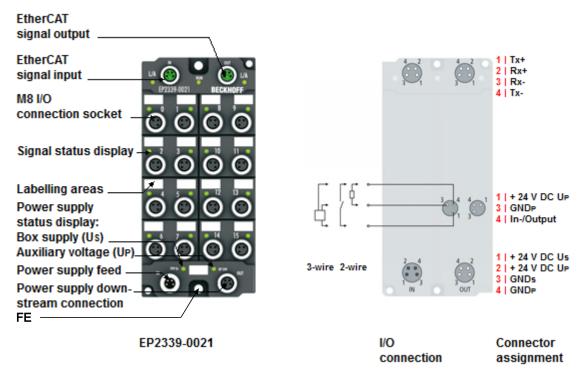


Fig. 11: EP2339-0021

16 digital inputs or outputs, 24 V_{pc}

The EP2339-0021 EtherCAT Box has 16 digital channels, each of which can be operated as inputs or outputs. A configuration whether a channel is to be used as input or output is not required; the input circuit is internally fixed to the output driver so that a set output is automatically displayed in the input process image.

The outputs process load currents up to 0.5 A, are short-circuit proof and protected against inverse polarity. The filter constant of the inputs is 3 ms. The state of each signal is indicated by means of light emitting diodes. The signals are connected via M8 connectors.

Supply of the connected sensors from U_P, not from U_S

In contrast to many other modules, the EP2339-0021 EtherCAT Box supplies digital sensors from the U_P peripheral voltage and not from the U_S control voltage! Nevertheless, an overload of the sensor supply (current > 0.5 A) is also indicated here by the illuminated red U_S LED.

NOTE

For shutdown in the event of a fault, do not supply sensors externally

If the design of your installation is such that the power supply voltage U_P is switched off in the event of a fault, you must not power the connected sensors externally, but only through EP2339-0021! Otherwise, when the U_P energy is switched off, EP2339-0021 can continue to draw energy from the external sensor supply, and the outputs will not be switched off.

Quick links

Technical data [▶ 31]

Process image [32]

Dimensions [▶ 41]

Sensor/actuator connection [▶ 54]

3.6.2 EP2339-0022 - Introduction

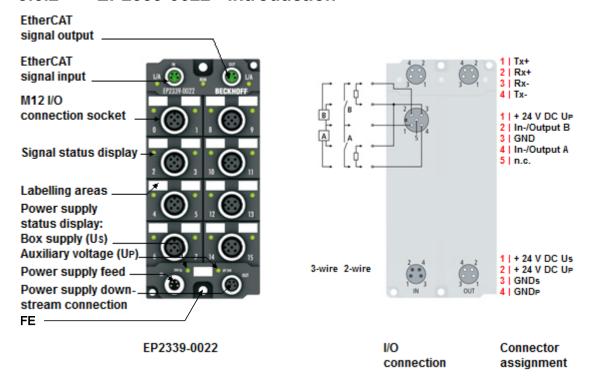


Fig. 12: EP2339-0022

16 digital inputs or outputs, 24 V_{DC}

The EP2339-0022 EtherCAT Box has 16 digital channels, each of which can be operated as inputs or outputs. A configuration whether a channel is to be used as input or output is not required; the input circuit is internally fixed to the output driver so that a set output is automatically displayed in the input process image.

The outputs process load currents up to 0.5 A, are short-circuit proof and protected against inverse polarity.

The filter constant of the inputs is 3 ms.

The state of each signal is indicated by means of light emitting diodes. The signals are connected via M12 connectors.

Supply of the connected sensors from U_P, not from U_S

In contrast to many other modules, the EP2339-0022 EtherCAT Box supplies digital sensors from the U_{P} peripheral voltage and not from the U_{S} control voltage! Nevertheless, an overload of the sensor supply (current > 0.5 A) is also indicated here by the illuminated red U_{S} LED.

NOTE

For switch-off in the event of a fault, do not supply sensors externally

If the design of your installation is such that the power supply voltage U_{P} is switched off in the event of a fault, you must not power the connected sensors externally, but only through EP2339-0022! Otherwise, when the U_{P} energy is switched off, EP2339-0022 can continue to draw energy from the external sensor supply, and the outputs will not be switched off.

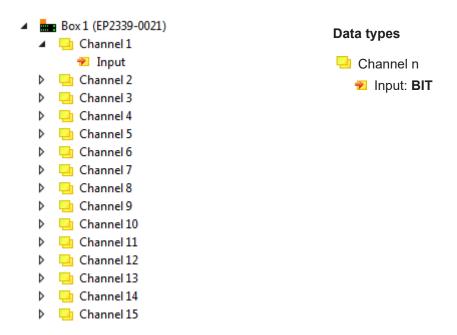
Quick links

Technical data [▶ 31]
Process image [▶ 32]
Dimensions [▶ 41]

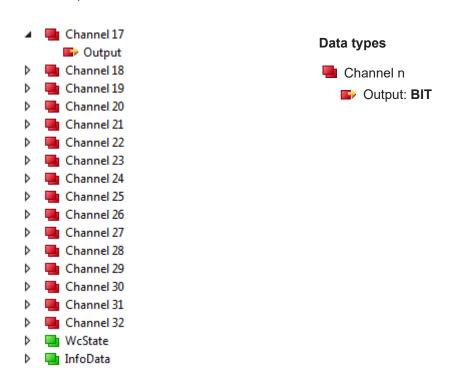
Sensor/actuator connection [▶ 54]

3.6.3 **EP2339-002x - Technical data**

Technical data	EP2339-0021	EP2339-0022	
Fieldbus	EtherCAT		
Fieldbus connection	2 x M8 socket (green)		
Number of outputs	0 to 16		
Output connections	16x M8	8x M12	
Load type	ohmic, inductive, lamp load		
Nominal output voltage	24 V _{DC} (-15%/+20%)		
Output current	max. 0,5 A per channel		
Short circuit current	max. 1,5 A		
Supply of the module electronics	from the control voltage Us		
Current consumption of the module electronics	typically 120 mA		
Output driver supply	from the load voltage U _P		
Output driver current consumption	typically 20 mA		
Input connections	16x M8	8x M12	
Number of inputs	0 to 16		
Nominal input voltage	24 V _{DC} (-15%/+20%)		
Input filter	3,0 ms		
Signal voltage "0"	-3+5 V (EN 61131-2, type 3)		
Signal voltage "1"	+11+30 V (EN 61131-2, type 3)		
Input current	typically 5 mA at 24 V		
Sensor supply	from the peripheral voltage $U_{\mbox{\tiny P}},$ proof	max. 0,5 A, total short-circuit	
Power supply connection	Feed: 1 x M8 plug, 4-pin Downstream connection: 1 x M8 socket, 4-pin		
Electrical isolation			
Fieldbus	500 V		
GND _S / GND _P	yes		
Ambient temperature during operation	-25+60 °C		
	-25+55 °C conforms to cURus		
Ambient temperature during storage	-40+85 °C		
Vibration / shock resistance	conforms to EN 60068-2-6 / EN 60068-2-27		
EMC immunity / emission	conforms to EN 61000-6-2 / EN 61000-6-4		
Protection class	IP65, IP66, IP67 (conforms to EN 60529)		
Mounting position	variable		
Approvals	CE, <u>cURus [▶ 60]</u>		


EP23xx Version: 3.1 31

3.6.4 EP2339-002x - Process image


Inputs

Under **Channel 1** to **Channel 16** you will find the 16 digital inputs of the module (here as an example the EP2339-0021).

Outputs

Under **Channel 17** to **Channel 32** you will find the 16 digital outputs of the module (here as an example the EP2339-0021).

3.7 EP2339-0042

3.7.1 EP2339-0042 - Introduction

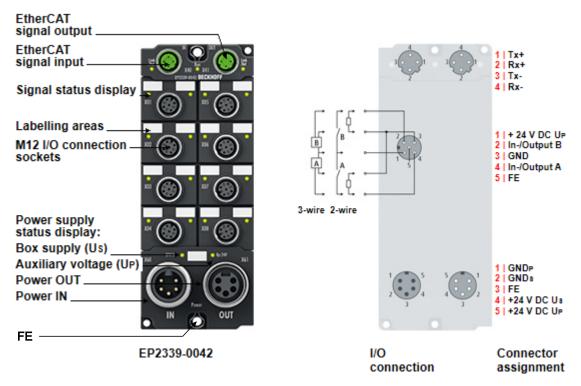


Fig. 13: EP2339-0042

16-channel digital input or output 24 V DC

The EP2339-0042 EtherCAT Box has 16 digital channels, each of which can optionally be operated as an input or as an output. A configuration for using a channel as input or output is not necessary; the input circuit is internally connected to the output driver, so that a set output is displayed automatically in the input process image.

A filter constant of 3.0 ms is available for the inputs. The outputs are short-circuit proof. They handle load currents of up to 0.5 A each. The state of each signal is indicated by means of light emitting diodes. The signals are connected via M12 screw type connectors.

Supply of the connected sensors from U_P, not from U_S

In contrast to many other modules, the EP2339-0042 EtherCAT Box supplies digital sensors from the U_P peripheral voltage and not from the U_S control voltage.

NOTE

For shutdown in the event of a fault, do not supply sensors externally

If the design of your installation is such that the power supply voltage U_P is switched off in the event of a fault, you must not power the connected sensors externally, but only through the EP2339-0042! Otherwise, when the U_P energy is switched off, the EP2339-0042 can continue to draw energy from the external sensor supply, and the outputs will not be switched off.

Quick links

Technical data [▶ 34]

Process image [▶ 35]

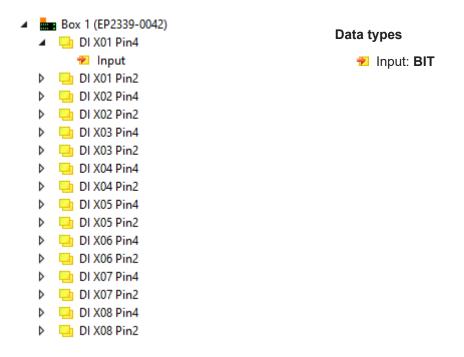
Dimensions [▶ 42]

Sensor/actuator connection [▶ 55]

3.7.2 EP2339-0042 - Technical data

All values are typical values over the entire temperature range, unless stated otherwise.

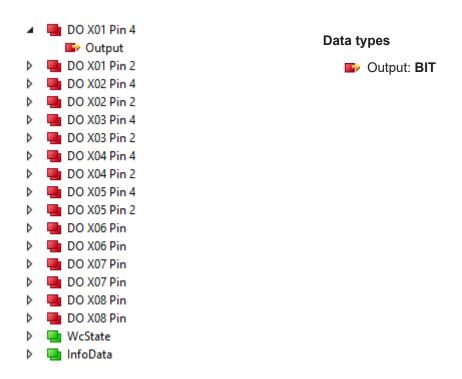
Technical data	EP2339-0042
Fieldbus	EtherCAT
Fieldbus connection	2x M12 socket, D-coded, 4-pin, green
Number of channels	16 digital inputs or outputs
Input / output connections	8x M12
Load type	ohmic, inductive, lamp load
Nominal output voltage	24 V _{DC} (-15%/+20%)
Output current	max. 0.5 A on each channel, individually short-circuit proof
Short circuit current	max. 1.5 A
Supply of the module electronics	from the control voltage U _S
Current consumption of the module electronics	120 mA
Output driver supply	from the peripheral voltage U _P
Output driver current consumption	20 mA + load
Nominal input voltage	24 V _{DC} (-15%/+20%)
Input filter	3.0 ms
Signal voltage "0"	-3+5 V (EN 61131-2, type 3)
Signal voltage "1"	+11+30 V (EN 61131-2, type 3)
Input current	6 mA at 24 V
Sensor supply	from the peripheral voltage U _P
	max. 0.5 A, short-circuit proof overall
Power supply connection	Input: 1x 7/8" plug, 5-pin Downstream connection: 1x 7/8" socket, 5-pin
	max. 16 A per Pin
Electrical isolation	500 V (fieldbus / IO)
Ambient temperature during operation	-25+60 °C -25+55 °C conforms to cURus
Ambient temperature during storage	-40+85 °C
Vibration / shock resistance	conforms to EN 60068-2-6 / EN 60068-2-27
EMC immunity / emission	conforms to EN 61000-6-2 / EN 61000-6-4
Protection class	IP65, IP66, IP67 (conforms to EN 60529)
Weight	approx. 440 g
Installation position	variable
Approvals	CE, cURus in preparation



3.7.3 EP2339-0042 - Process image

Inputs

The process image contains a process data object for each digital input.


The name of each process data object contains the name of the socket and the pin number of the corresponding digital input.

Outputs

The process image contains a process data object for each digital output.

The name of each process data object contains the name of the socket and the pin number of the corresponding digital output.

3.8 EP2349-002x

3.8.1 **EP2349-002x - Introduction**

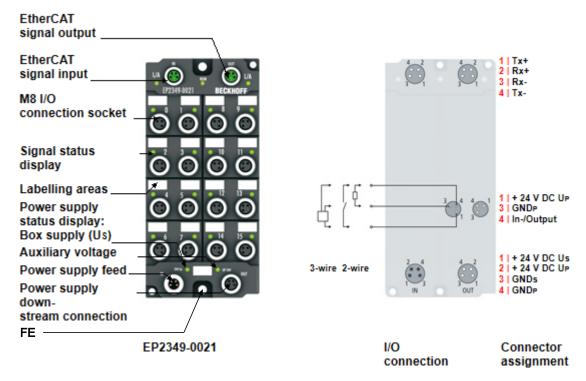


Fig. 14: EP2349-0021

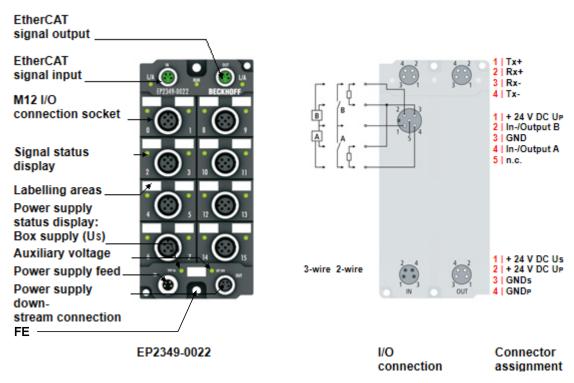


Fig. 15: EP2349-0022

16 digital inputs or outputs, 24 V_{DC} , freely selectable, 10 μs filter

The EP2349 EtherCAT Box has 16 freely selectable digital inputs or outputs on one device. The filter constant of the inputs is 10 μ s. The outputs are short-circuit proof and protected against inverse connection and process load currents up to 0.5 A, whereby the total current is limited to 4 A. The state of each signal is indicated by means of light emitting diodes. The signals are optionally connected via M8 (EP2349-0021) or M12 (EP2349-0022) connectors. The sensors are powered by the load voltage UP.

Supply of the connected sensors from U_P, not from U_S

In contrast to many other modules, the EP2349-002x EtherCAT Box supplies digital sensors from the U_P peripheral voltage and not from the U_S control voltage! Nevertheless, an overload of the sensor supply (current > 0.5 A) is also indicated here by the illuminated red U_S LED.

NOTE

For shutdown in the event of a fault, do not supply sensors externally

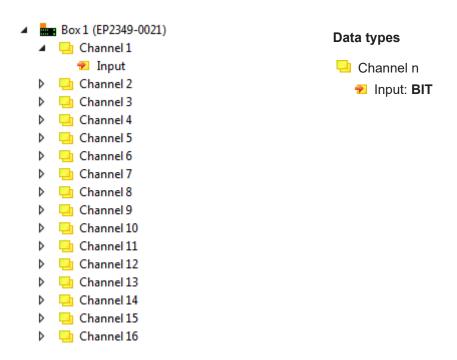
If the design of your installation is such that the power supply voltage U_P is switched off in the event of a fault, you must not power the connected sensors externally, but only through EP2349-002x! Otherwise, when the U_P energy is switched off, EP2349-002x can continue to draw energy from the external sensor supply, and the outputs will not be switched off.

Quick links

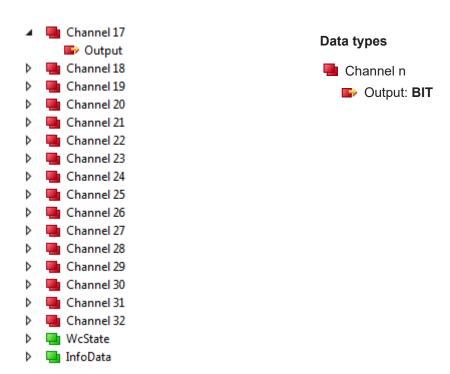
Technical data [▶ 38]
Process image [▶ 39]
Dimensions [▶ 41]

Sensor/actuator connection [▶ 54]

3.8.2 **EP2349-002x - Technical data**


Technical data	EP2349-0021	EP2349-0022	
Fieldbus	EtherCAT		
Fieldbus connection	2 x M8 socket (green)		
Number of outputs	16 to 0		
Output connections	M8 sockets	M12 sockets	
Load type	ohmic, inductive, lamp load		
Nominal output voltage	24 V _{DC} (-15%/+20%)		
Output current	max. 0.5 A each channel, individual current max. 4 A	dually short-circuit proof, sum	
Short circuit current	maximum 1.5 A		
Supply of the module electronics	from the control voltage Us		
Current consumption of the module electronics	typically 130 mA		
Output driver supply	from load voltage Up		
Output driver current consumption	typically 20 mA		
Input connections	M8 sockets	M12 sockets	
Number of inputs	0 to 16		
Nominal input voltage	24 V _{DC} (-15%/+20%)		
Input filter	10 μs		
Signal voltage "0"	-3+5 V (EN 61131-2, type 3)		
Signal voltage "1"	+11+30 V (EN 61131-2, type 3)		
Input current	typically 6 mA (EN 61131-2, type 3)		
Sensor supply	from the peripheral voltage Up, r	max. 0.5 A, total short-circuit proof	
Power supply connection	Feed: 1 x M8 plug, 4-pin Downstream connection: 1 x M8	socket, 4-pin	
Electrical isolation			
Fieldbus	500 V		
GND _s / GND _P	yes		
Weight	approx. 250 g		
Ambient temperature during operation	-25+60 °C -25+55 °C conforms to cURus	}	
Ambient temperature during storage	-25+85 °C		
Vibration / shock resistance	conforms to EN 60068-2-6 / EN 60068-2-27		
EMC immunity / emission	conforms to EN 61000-6-2 / EN	61000-6-4	
Protection class	IP65, IP66, IP67 (conforms to El	N 60529)	
Mounting position	variable		
Approvals	CE, <u>cURus [▶ 60]</u>		

3.8.3 **EP2349-002x - Process image**


Inputs

Under **Channel 1** to **Channel 16** you will find the 16 digital inputs of the module (here as an example the EP2349-0021).

Outputs

Under **Channel 17** to **Channel 32** you will find the 16 digital outputs of the module (here as an example the EP2349-0021).

4 Mounting and connection

4.1 Mounting

4.1.1 Dimensions EPxxxx-xx0x and EPxxxx-xx1x

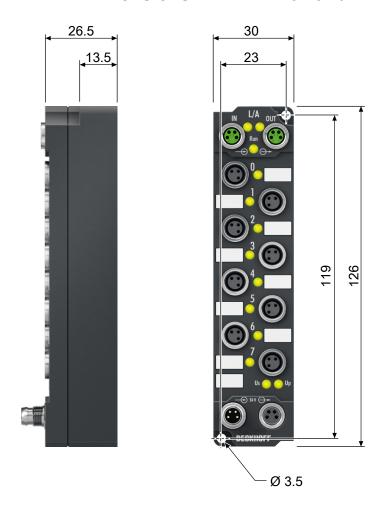


Fig. 16: Dimensions

All dimensions are given in millimeters.

Housing features

Housing material	PA6 (polyamide)
Sealing compound	polyurethane
Mounting	two fastening holes Ø 3.5 mm for M3
Metal parts	brass, nickel-plated
Contacts	CuZn, gold-plated
Power feed through	max. 4 A
Installation position	variable
Protection class	IP65, IP66, IP67 (conforms to EN 60529) when screwed together
Dimensions (H x W x D)	approx. 126 x 30 x 26.5 mm (without connectors)

4.1.2 Dimensions EPxxxx-xx2x

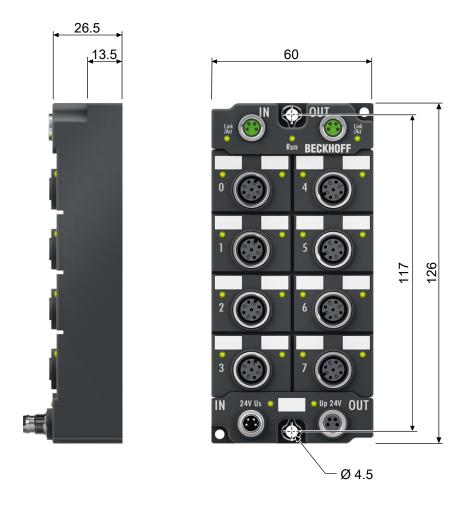


Fig. 17: Dimensions

All dimensions are given in millimeters.

Housing features

Housing material	PA6 (polyamide)
Sealing compound	polyurethane
Mounting	two fastening holes Ø 4.5 mm for M4
Metal parts	brass, nickel-plated
Contacts	CuZn, gold-plated
Power feed through	max. 4 A
Installation position	variable
Protection class	IP65, IP66, IP67 (conforms to EN 60529) when screwed together
Dimensions (H x W x D)	approx. 126 x 60 x 26.5 mm (without connectors)

4.1.3 EPxxxx-xx42 dimensions

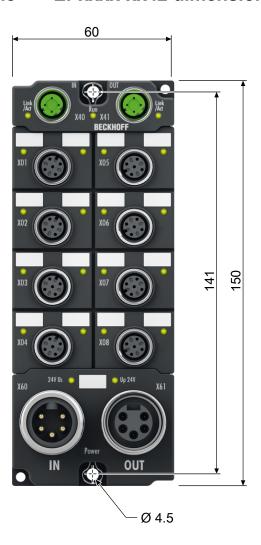


Fig. 18: Dimensions

All dimensions are given in millimeters.

Housing features

Housing material	PA6 (polyamide)
Sealing compound	polyurethane
Mounting	two fastening holes Ø 4.5 mm for M4
Metal parts	brass, nickel-plated
Contacts	CuZn, gold-plated
Power feed through	max. 16 A at 40°C (according to IEC 60512-3)
Installation position	variable
Protection class	IP65, IP66, IP67 (conforms to EN 60529) when screwed together
Dimensions (H x W x D)	approx. 150 x 60 x 26.5 mm (without connectors)

4.1.4 Fixing

Protection of connectors against contamination!

While mounting the modules, protect all connectors, especially the IP-Link, against contamination! Only with connected cables or plugs the protection class IP67 is guaranteed! Unused connectors have to be protected with the right plugs! See for plug sets in the catalogue.

Modules with narrow housing are mounted with two M3 bolts.

Modules with wide housing are mounted with two M3 bolts to the fixing holes located at the corners or mounted with two M4 bolts to the fixing holes located centrally.

The bolts must be longer than 15 mm. The fixing holes of the modules are not threaded.

When assembling, remember that the fieldbus connectors increases the overall height. See chapter accessories.

Mounting Rail ZS5300-0001

The mounting rail ZS5300-0001 (500 mm x 129 mm) allows the time saving assembly of modules.

The rail is made of stainless steel, 1.5 mm thick, with already pre-made M3 threads for the modules. The rail has got 5.3 mm slots to mount it via M5 screws to the machine.

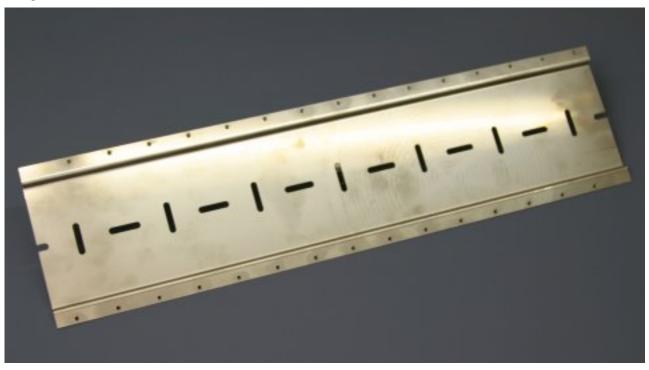


Fig. 19: Mounting Rail ZS5300-000

The mounting rail is 500 mm long, that way 15 narrow modules can be mounted with a distance of 2 mm between two modules. The rail can be cut to length for the application.

Mounting Rail ZS5300-0011

The mounting rail ZS5300-0011 (500 mm x 129 mm) has in addition to the M3 treads also pre-made M4 treads to fix 60 mm wide modules via their middle holes.

Up to 14 narrow or 7 wide modules may be mixed mounted.

4.1.5 Functional earth (FE)

EtherCAT Box modules of types EPxxxx-002x and EPxxxx-0042 must be grounded:

The fastening holes also serve as connections for the functional earth (FE).

Make sure that the box is earthed with low impedance via both fastening screws. You can achieve this, for example, by mounting the box on a grounded machine bed.

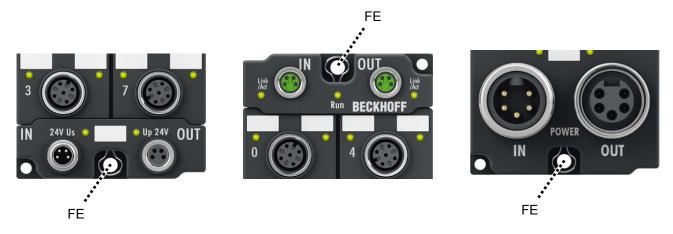


Fig. 20: Functional earth via the fastening holes

4.2 Connections

4.2.1 Tightening torques for plug connectors

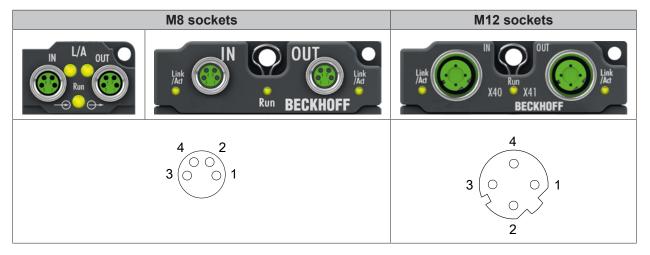
Screw connectors tight with a torque wrench. (e.g. ZB8801 from Beckhoff)

Connector diameter	Tightening torque	
M8	0.4 Nm	
M12	0.6 Nm	
7/8"	1.5 Nm	

4.2.2 EtherCAT

4.2.2.1 Connectors

NOTE


Risk of confusion: supply voltages and EtherCAT

Defect possible through incorrect insertion.

• Observe the color coding of the connectors:

black: Supply voltages green: EtherCAT

EtherCAT Box modules have two green M8 or M12 sockets for the incoming and outgoing EtherCAT connections.

Assignment

There are various different standards for the assignment and colors of connectors and cables for EtherCAT.

EtherCAT Plug connector			Cable		Standard	
Signal	M8	M12	RJ45 ¹	ZB9010, ZB9020, ZB9030, ZB9032, ZK1090-6292, ZK1090-3xxx-xxxx	ZB9030, ZB9032, sions of ZB9030, ZK1090-6292, ZB9032,	
Tx +	Pin 1	Pin 1	Pin 1	yellow ²	orange/white3	white/orange
Tx -	Pin 4	Pin 3	Pin 2	orange ²	orange ³	orange
Rx +	Pin 2	Pin 2	Pin 3	white ²	blue/white ³	white/green
Rx -	Pin 3	Pin 4	Pin 6	blue ²	blue ³	green
Shield	Housing		Shroud	Shield	Shield	Shield

¹⁾ colored markings according to EN 61918 in the four-pin RJ45 connector ZS1090-0003

³) wire colors

Assimilation of color coding for cable ZB9030, ZB9032 and ZK1090-3xxxx-xxxx (with M8 connectors)

For unification, the prevalent cables ZB9030, ZB9032 and ZK1090-3xxx-xxxx were changed to the colors of EN61918 (yellow, orange, white, blue). So different color coding exists. But the electrical properties are absolutely identical.

²⁾ wire colors according to EN 61918

4.2.2.2 Status LEDs

L/A (Link/Act)

A green LED labelled "L/A" is located next to each EtherCAT socket. The LED indicates the communication state of the respective socket:

LED	Meaning
off	no connection to the connected EtherCAT device
lit	LINK: connection to the connected EtherCAT device
flashes	ACT: communication with the connected EtherCAT device

Run

Each EtherCAT slave has a green LED labelled "Run". The LED signals the status of the slave in the EtherCAT network:

LED	Meaning
off	Slave is in "Init" state
flashes uniformly	Slave is in "Pre-Operational" state
flashes sporadically	Slave is in "Safe-Operational" state
lit	Slave is in "Operational" state

Description of the EtherCAT slave states

4.2.2.3 Cables

For connecting EtherCAT devices only shielded Ethernet cables that meet the requirements of at least category 5 (CAT5) according to EN 50173 or ISO/IEC 11801 should be used.

EtherCAT uses four wires for signal transmission.

Thanks to automatic line detection ("Auto MDI-X"), both symmetrical (1:1) or cross-over cables can be used between Beckhoff EtherCAT.

Detailed recommendations for the cabling of EtherCAT devices

4.2.3 Supply voltages

The EtherCAT Box is supplied with two supply voltages.

Control voltage U_s

Power is supplied to the fieldbus, the processor logic, the inputs and the sensors from the control voltage U_s .

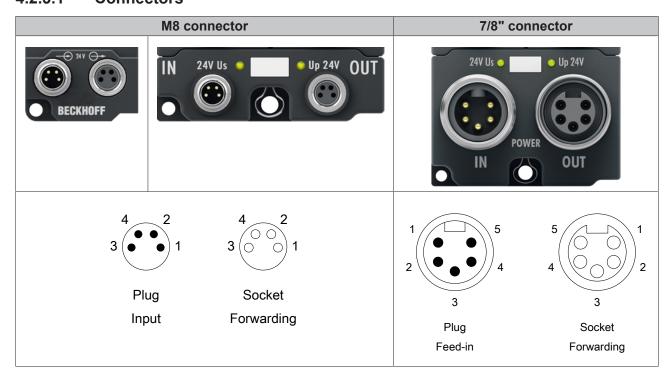
Peripheral voltage U_P

The peripheral voltage U_P supplies the digital outputs; it can be brought in separately. Hence, if the peripheral voltage is switched off, the fieldbus function as well as the supply and function of the inputs are retained.

Redirection of the supply voltages

The power IN and OUT connections are bridged in the module. Hence, the supply voltages U_s and U_p can be passed from EtherCAT Box to EtherCAT Box in a simple manner.

NOTE


Note the maximum current!

Ensure that the permitted current for the connectors is not exceeded when routing the supply voltages U_s and U_p :

M8 connector: max. 4 A 7/8" connector: max 16 A

4.2.3.1 Connectors

Function	M8	7/8"	Description	Core color 1)
Us	1	4	Control voltage	Brown
U _P	2	5	Peripheral voltage	White
GND _s	3	2	GND to U _s	Blue
GND _P	4	1	GND to U _P	Black
FE	-	3	Functional earth	Grey

¹⁾ The core colors apply to cables of the type: Beckhoff ZK2020-xxxx-xxxx

GND_S and GND_P are linked for modules of the following types:

- EPxxxx-0001
- EPxxxx-0002
- EPxxxx-0008

NOTE

The electrical isolation between GNDs and GND can be removed

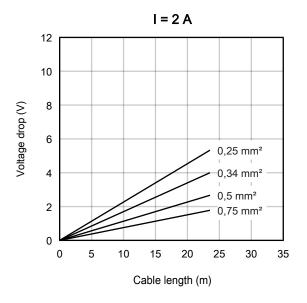
In some EtherCAT Box modules the ground potentials GND_s and GND_P are linked.

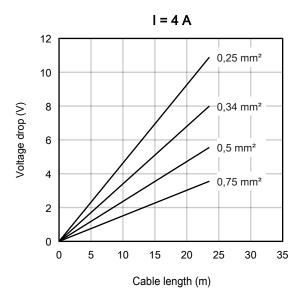
If several EtherCAT Box modules are supplied with the same electrically isolated voltages, check whether there is an EtherCAT Box among them in which the ground potentials are linked.

4.2.3.2 Status LEDs

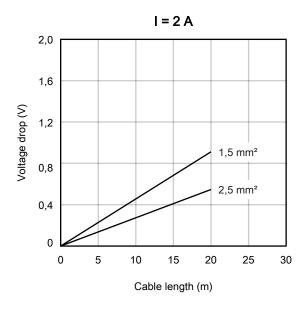
Fig. 21: Status LEDs for the supply voltages

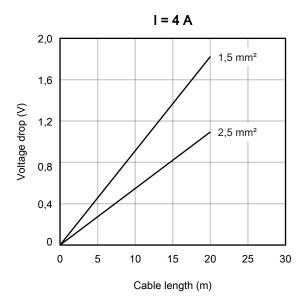
LED	Display	Meaning
U _s (control voltage)	off	Supply voltage U _s is not present
	green illuminated	Supply voltage U _s is present
	red illuminated	Due to overload (current > 0.5 A), the sensor supply generated from the supply voltage Us was switched off for all sensors supplied from it.
J _P (peripheral voltage) off		Supply voltage U _P is not present
	green illuminated	Supply voltage U _P is present




4.2.3.3 Conductor losses

Take into account the voltage drop on the supply line when planning a system. Avoid the voltage drop being so high that the supply voltage at the box lies below the minimum nominal voltage.


Variations in the voltage of the power supply unit must also be taken into account.


Voltage drop on cables with M8 connectors

Voltage drop on cables with 7/8" connectors

4.2.4 Digital inputs and outputs

4.2.4.1 Digital outputs M8 and M12

The digital output modules forward the binary control signals of the automation device to the actuators at the process level.

The signals are connected via M8 connectors (EP2xxx-0001) or M12 connectors (EP2xxx-0002).

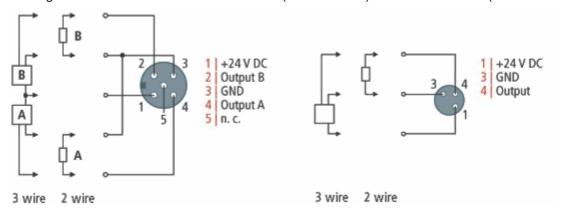


Fig. 22: Digital outputs M8 and M12

The outputs are short-circuit proof and protected against inverse connection.

LEDs indicate the signal state of the outputs.

4.2.4.2 Digital inputs M8 and M12

The digital input modules acquire the binary control signals from the process level and transmit them to the higher-level automation unit.

The signals are optionally connected via screw-in M8 connectors (EPxxxx-0001) or screw-in M12 connectors (EPxxxx-0002).

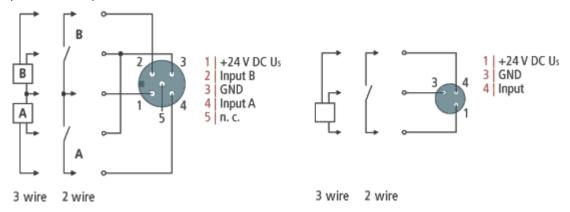


Fig. 23: Digital inputs M8 and M12

The sensors are supplied from the control voltage Us with a maximum current of 0.5 A.

The state of the signals is indicated by light emitting diodes.

4.2.4.3 Digital inputs/outputs M8 and M12

NOTE

EP2339-0042: different pin assignment.

Pin assignment of the digital inputs/outputs of EP2339-0042 [▶ 55]

Digital inputs/outputs can be operated as inputs or outputs.

If the channels are operated as digital inputs, the modules record the binary control signals from the process level and transport them to the higher-level automation device. The sensors are powered by the peripheral voltage U_P .

If the channels are operated as a digital output, the modules forward the binary control signals of the automation device to the actuators at the process level. The outputs are short-circuit proof and protected against inverse connection.

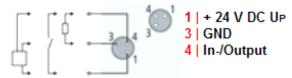


Fig. 24: Digital inputs/outputs M8

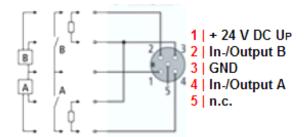


Fig. 25: Digital inputs/outputs M12

The state of the signals is indicated by light emitting diodes.

4.2.4.4 Digital inputs/outputs M12 for EP2339-0042

Digital inputs/outputs can be operated as inputs or outputs.

If the channels are operated as digital inputs, the modules record the binary control signals from the process level and transport them to the higher-level automation device. The sensors are powered by the peripheral voltage U_P .

If the channels are operated as a digital output, the modules forward the binary control signals of the automation device to the actuators at the process level. The outputs are short-circuit proof and protected against inverse connection.

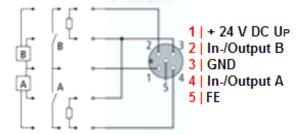


Fig. 26: Digital inputs/outputs M12

LEDs indicate the signal state of the inputs/outputs.

4.2.4.5 Digital inputs and outputs ZS2001, 8 channels

The digital outputs forward the binary control signals of the automation device to the actuators at the process level. The 8 outputs process load currents up to 0.5 A, and indicate their signal state through LEDs. The signal is optionally connected via various ZS2001 connectors. The outputs are short-circuit proof and protected against inverse connection.

The digital inputs acquire the binary control signals from the process level and transmit them to the higher-level automation device. The signal state is indicated by means of LEDs. The signal is optionally connected via various ZS2001 connectors.

The sensors are supplied from the control voltage U_s . The peripheral voltage U_P is required for the output drivers. If U_P and U_S are used for passing the power on, the maximum current must not exceed the 4 A.

Inputs

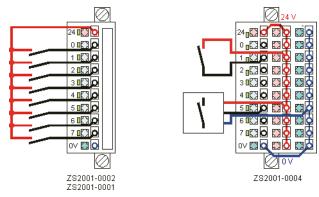


Fig. 27: Digital inputs ZS2001, 8 channels

The diagram shows the connection of 8 sensors in single-wire technology as well as one sensor each in two-wire and three-wire technology.

Please note for ZS2001-0004 connectors: two bridges (24 V and 0 V) are required to supply the terminal points for two- and three-wire connection technology.

Outputs

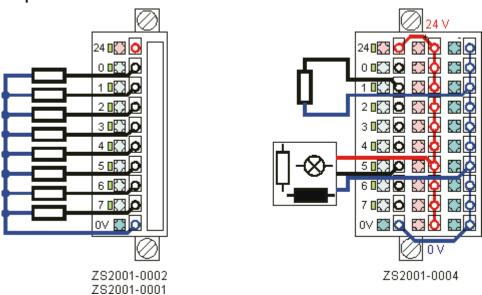


Fig. 28: Digital outputs ZS2001, 8 channels

The diagram shows the connection of 8 actuators in single-wire technology and one actuator each in two-wire and three-wire technology.

Please note for ZS2001-0004 connectors: two bridges (24 V and 0 V) are required to supply the terminal points for two- and three-wire connection technology.

4.2.4.5.1 Ordering information for KM plug-in connector

Fig. 29: ZS2001-0001, ZS2001-0002: KM connectors for single wire connection

Fig. 30: ZS2001-0004: KM connectors for three-wire connection

Order designation	Signal LEDs	Connection technology single-wire two-wire three-wire		
ZS2001-0001	no	yes	no	no
ZS2001-0002	yes	yes	no	no
ZS2001-0004	yes	yes	yes	yes

4.2.4.5.2 Technical data of the KM connectors

Technical data	ZS2001-0001	ZS2001-0002	ZS2001-0004	
Number of terminal points	10	10	30	
Signal LEDs	no	yes	yes	
Nominal voltage	50 V _{DC}	24 V _{DC}	24 V _{DC}	
Nominal current	2 A			
Wire cross-section	0.5 mm ² 1.5 mm ²			
Strip length	8 mm			
Dimensions (W x H x D)	approx. 42mm x 10.3mm x 26.9mm	approx. 42mm x 12.7mm x 26.9mm	approx. 42mm x 20.8mm x 26.9mm	
Weight	approx. 10 g	approx. 10 g	approx. 20 g	
Permissible ambient temperature range during operation	0 °C + 55 °C			
Permissible ambient temperature range during storage	-25 °C + 85 °C			
Permissible relative air humidity	95 %, no condensation			
Vibration / shock resistance	conforms to EN 60068-2-6 / EN 60068-2-27			
EMC immunity / emission	conforms to EN 61000-6-2 / EN 61000-6-4			
Protection class	IP20			
Mounting position	variable			
Approval	CE			

4.2.4.6 digital inputs and outputs D-sub 25

The EP2316-0008 digital combination module

- · connects the binary control signals from the automation device on to the actuators at the process level.
- acquires the binary control signals from the process level and transmits them to the higher-level automation unit.

The 8 outputs supply load currents up to 0.5 A, although the total current from all the outputs must not exceed 4 A. The outputs are short-circuit proof and protected against inverse connection.

The sensors are supplied from the control voltage Us.

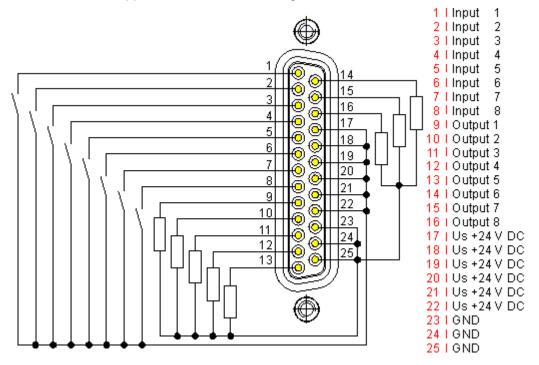


Fig. 31: Digital inputs and outputs D-sub 25

4.3 UL Requirements

The installation of the EtherCAT Box Modules certified by UL has to meet the following requirements.

Supply voltage

A CAUTION

CAUTION!

This UL requirements are valid for all supply voltages of all marked EtherCAT Box Modules! For the compliance of the UL requirements the EtherCAT Box Modules should only be supplied

- by a 24 V_{DC} supply voltage, supplied by an isolating source and protected by means of a fuse (in accordance with UL248), rated maximum 4 Amp, or
- by a 24 V_{DC} power source, that has to satisfy NEC class 2.
 A NEC class 2 power supply shall not be connected in series or parallel with another (class 2) power source!

A CAUTION

CAUTION!

To meet the UL requirements, the EtherCAT Box Modules must not be connected to unlimited power sources!

Networks

⚠ CAUTION

CAUTION!

To meet the UL requirements, EtherCAT Box Modules must not be connected to telecommunication networks!

Ambient temperature range

A CAUTION

CAUTION!

To meet the UL requirements, EtherCAT Box Modules has to be operated only at an ambient temperature range of 0 to 55°C!

Marking for UL

All EtherCAT Box Modules certified by UL (Underwriters Laboratories) are marked with the following label.

Fig. 32: UL label

4.4 ATEX notes

4.4.1 ATEX - Special conditions

⚠ WARNING

Observe the special conditions for the intended use of EtherCAT Box modules in potentially explosive areas – directive 94/9/EU.

- The certified components are to be installed with a <u>BG2000-0000 or BG2000-0010 protection enclosure</u> [<u>▶</u> 62] that guarantees a protection against mechanical hazards!
- If the temperatures during rated operation are higher than 70°C at the feed-in points of cables, lines or pipes, or higher than 80°C at the wire branching points, then cables must be selected whose temperature data correspond to the actual measured temperature values!
- Observe the permissible ambient temperature range of 0 to 55°C for the use of EtherCAT Box modules in potentially explosive areas!
- Measures must be taken to protect against the rated operating voltage being exceeded by more than 40% due to short-term interference voltages!
- The connections of the certified components may only be connected or disconnected if the supply voltage has been switched off or if a non-explosive atmosphere is ensured!

Standards

The fundamental health and safety requirements are fulfilled by compliance with the following standards:

EN 60079-0: 2006EN 60079-15: 2005

Marking

The EtherCAT Box modules certified for potentially explosive areas bear the following marking:

II 3 G Ex nA II T4 DEKRA 11ATEX0080 X Ta: 0 - 55°C

or

II 3 G Ex nA nC IIC T4 DEKRA 11ATEX0080 X Ta: 0 - 55°C

Batch number (D number)

The EtherCAT Box modules bear a batch number (D number) that is structured as follows:

D: WW YY FF HH

WW - week of production (calendar week)

YY - year of production

FF - firmware version

HH - hardware version

Example with batch number 29 10 02 01:

29 - week of production 29

10 - year of production 2010

02 - firmware version 02

01 - hardware version 01

4.4.2 BG2000 - EtherCAT Box protection enclosures

⚠ WARNING

Risk of electric shock and damage of device!

Bring the EtherCAT system into a safe, powered down state before starting installation, disassembly or wiring of the modules!

ATEX

▲ WARNING

Mount a protection enclosure!

To fulfill the <u>special conditions according to ATEX [\rightarrow 61]</u>, a BG2000-0000 or BG2000-0010 protection enclosure has to be mounted over the EtherCAT Box.

Installation

Put the cables for EtherCAT, power supply and sensors/actuators through the hole of the protection enclosure.

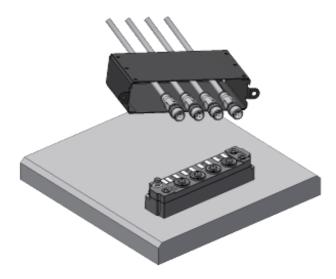


Fig. 33: BG2000 - putting the cables

Fix the wires for EtherCAT, power supply and sensors/actuators to the EtherCAT Box.

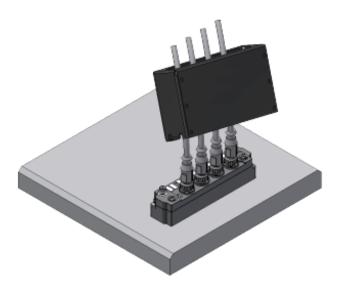


Fig. 34: BG2000 - fixing the cables

Mount the protection enclosure over the EtherCAT Box.

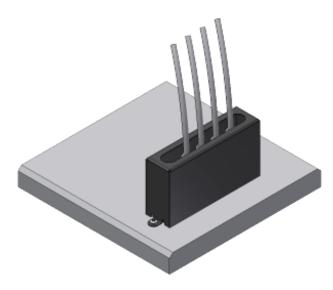


Fig. 35: BG2000 - mounting the protection enclosure

4.4.3 ATEX Documentation

Notes about operation of EtherCAT Box Modules (EPxxxx-xxxx) in potentially explosive areas (ATEX)

Pay also attention to the continuative documentationNotes about operation of EtherCAT Box Modules (EPxxxx-xxxx) in potentially explosive areas (ATEX) that is available in the download area of the Beckhoff homepage http://www.beckhoff.com!

5 Commissioning and configuration

5.1 Integration in TwinCAT

The procedure for integration in TwinCAT is described in this Quick start guide.

5.2 Switching inductive loads

When switching off inductive loads, high induction voltages result from interrupting the current too quickly. These are limited by an integrated free-wheeling diode. Since the current reduces only slowly, a delayed switch-off can occur in many control applications. For example, a valve remains open for many milliseconds. Switch-off times are realized that correspond, for instance, to the switch-on time of the coil.

Protection against high induction voltages

To protect against voltage peaks such as can occur when switching inductive loads, we recommend to provide suitable protective circuits (e.g. with the free-wheeling diode, RC combination or varistor) directly at the actuator.

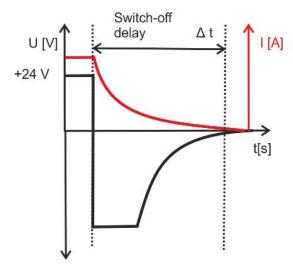


Fig. 36: Switch-off of inductive loads

5.3 Behavior of the outputs in case of error (only EPxx16 and EPxx17)

In the TwinCAT System Manager, you can set parameters for the modules

- EP2316-0003
- EP2316-0008
- EP2816-00xx
- EP2817-0008

in the register tab COE - Online.

The description of the parameter settings is done here using module EP2316-0008, but applies to all these modules.

Behavior of the outputs in case of network failure

You can use bit 8000:0n (Safe State Active) to specify whether channel n should assume a certain value (Safe State Value) when data transmission is interrupted.

With bit 8001:0n (Safe State Value) you define this value for channel n.

Safe State Value during network start-up

The network transmits output process data only in the network states Save-Operational (SAFE-OP) and Operational (OP). Also at the network states INIT, Pre-Operational (PRE-OP) and BOOT passed through during network start-up no output process data is transmitted. If Safe State is activated for an output, this output also adopts the specified value during network start-up.

8000:0 - DIG Safe state active Ch.1

Observe the maximum short-circuit current!

When dimensioning the power supply unit and choosing the fuses, observe that the short-circuit current is approximately 1.7 A.

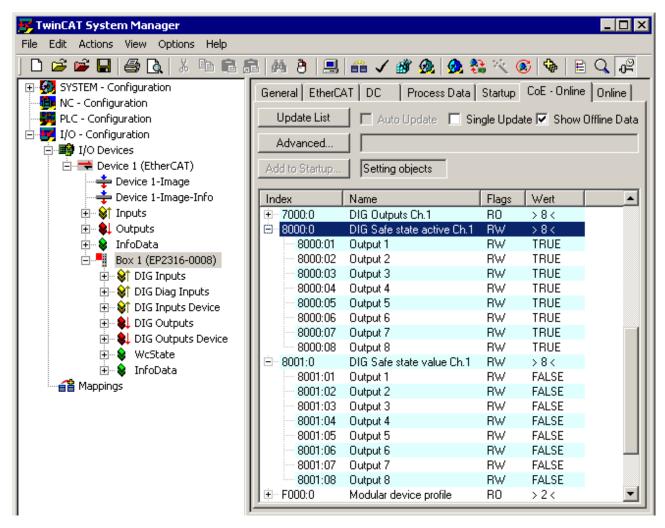


Fig. 37: EP2316-0008 - 8000:0 - DIG Safe state active Ch.1

8000:01 to 8000:08 - DIG Safe state active Ch.1, Output 1 to Output 8 (default: TRUE)

Specifies whether or not the outputs should adopt a safe state in the case of a network failure.

Value	Meaning
FALSE	Safe state disabled
TRUE	Safe state enabled

8001:01 to 8001:08 - DIG Safe state value Ch.1, Output 1 to Output 8 (default: FALSE)

Specifies what the safe state is.

Value	Meaning
FALSE	Output switched off
TRUE	Output switched on

Behavior of the outputs in the event of a short circuit

F800:0 - DO Settings (Safe State Value)

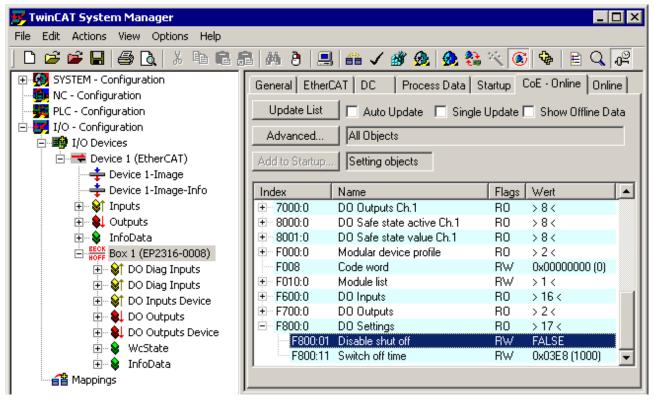


Fig. 38: EP2316-0008 - F800:0 - DO Settings (Safe State Value)

Table 1: F800:01 - Disable shut off (default: FALSE)

Value	Meaning
FALSE	In the event of a short circuit at one output, all outputs of the module are switched off. This disabling can be removed through the process data value <i>Reset Outputs</i> .
	In the event of a short circuit at an output, only this output of the module is switched off. After the short circuit has been removed, this output is automatically enabled again. see "Extracted nested table 4"

F800:11 - Switch off time (default: 0x03E8, 1000_{dec})

Here you can enter a time in milliseconds. During this time, the module checks whether the short circuit has been eliminated by switching itself on again.

Default = 1000 ms (depending on module type and internal cycle time). Errors are only displayed after this time.

Restoring the delivery state 5.4

To restore the delivery state for backup objects in ELxxxx terminals / EPxxxx- and EPPxxxx boxes, the CoE object Restore default parameters, SubIndex 001 can be selected in the TwinCAT System Manager (Config mode).

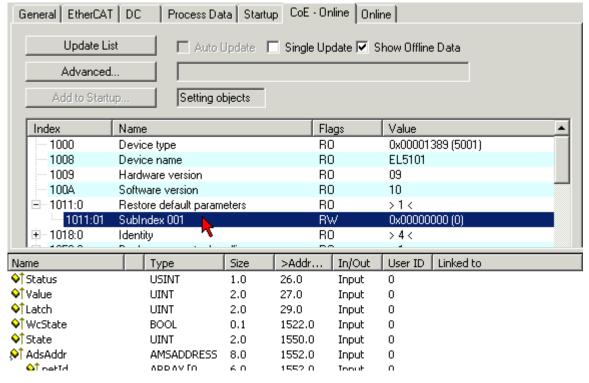


Fig. 39: Selecting the Restore default parameters PDO

Double-click on SubIndex 001 to enter the Set Value dialog. Enter the value 1684107116 in field Dec or the value 0x64616F6C in field Hex and confirm with OK.

All backup objects are reset to the delivery state.

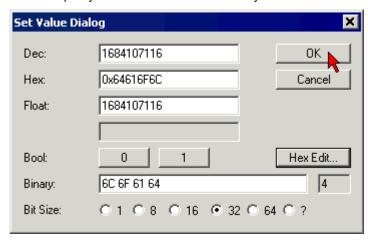


Fig. 40: Entering a restore value in the Set Value dialog

Alternative restore value

In some older terminals / boxes the backup objects can be switched with an alternative restore value:

Decimal value: 1819238756 Hexadecimal value: 0x6C6F6164

An incorrect entry for the restore value has no effect.

5.5 Decommissioning

⚠ WARNING

Risk of electric shock!

Bring the bus system into a safe, de-energized state before starting disassembly of the devices!

Disposal

In order to dispose of the device, it must be removed.

In accordance with the WEEE Directive 2012/19/EU, Beckhoff takes back old devices and accessories in Germany for proper disposal. Transport costs will be borne by the sender.

Return the old devices with the note "for disposal" to:

Beckhoff Automation GmbH & Co. KG Service Department Stahlstraße 31 D-33415 Verl

6 Appendix

6.1 General operating conditions

Protection degrees (IP-Code)

The standard IEC 60529 (DIN EN 60529) defines the degrees of protection in different classes.

Number: dust protection and touch guard	Definition
0	Non-protected
1	Protected against access to hazardous parts with the back of a hand. Protected against solid foreign objects of Ø 50 mm
2	Protected against access to hazardous parts with a finger. Protected against solid foreign objects of Ø 12.5 mm.
3	Protected against access to hazardous parts with a tool. Protected against solid foreign objects Ø 2.5 mm.
4	Protected against access to hazardous parts with a wire. Protected against solid foreign objects Ø 1 mm.
5	Protected against access to hazardous parts with a wire. Dust-protected. Intrusion of dust is not totally prevented, but dust shall not penetrate in a quantity to interfere with satisfactory operation of the device or to impair safety.
6	Protected against access to hazardous parts with a wire. Dust-tight. No intrusion of dust.

2. Number: water* protection	Definition
0	Non-protected
1	Protected against water drops
2	Protected against water drops when enclosure tilted up to 15°.
3	Protected against spraying water. Water sprayed at an angle up to 60° on either side of the vertical shall have no harmful effects.
4	Protected against splashing water. Water splashed against the disclosure from any direction shall have no harmful effects
5	Protected against water jets
6	Protected against powerful water jets
7	Protected against the effects of temporary immersion in water. Intrusion of water in quantities causing harmful effects shall not be possible when the enclosure is temporarily immersed in water for 30 min. in 1 m depth.

^{*)} These protection classes define only protection against water!

Chemical Resistance

The Resistance relates to the Housing of the IP 67 modules and the used metal parts. In the table below you will find some typical resistance.

Character	Resistance
Steam	at temperatures >100°C: not resistant
Sodium base liquor (ph-Value > 12)	at room temperature: resistant > 40°C: not resistant
Acetic acid	not resistant
Argon (technical clean)	resistant

Key

- · resistant: Lifetime several months
- non inherently resistant: Lifetime several weeks
- not resistant: Lifetime several hours resp. early decomposition

6.2 EtherCAT Box- / EtherCAT P Box - Accessories

Fixing

Ordering information	Description
ZS5300-0001	Mounting rail (500 mm x 129 mm)

Marking material, plugs

Ordering information	Description
ZS5000-0000	Fieldbus Box set M8 (contact labels, plugs)
ZS5000-0002	Fieldbus Box set M12 (contact labels, plugs)
ZS5000-0010	plugs M8, IP67 (50 pieces)
ZS5000-0020	plugs M12, IP67 (50 pieces)
ZS5100-0000	marking labels, not printed, 4 stripes at 10 pieces
ZS5100-xxxx	printed marking labels, on request

Tools

Ordering information	Description
ZB8800	torque wrench for M8 cables with knurl, incl. ratchet
ZB8800-0001	M12 ratchet for torque wrench ZB8800
ZB8800-0002	M8 ratchet (field assembly) for torque wrench ZB8800
ZB8801-0000	torque wrench for hexagonal plugs, adjustable
ZB8801-0001	torque cable key, M8/wrench size 9, for torque wrench ZB8801-0000
ZB8801-0002	torque cable key, M12/wrench size 13, for torque wrench ZB8801-0000
ZB8801-0003	torque cable key, M12 field assembly/wrench size 13, for torque wrench ZB8801-0000

Further accessories

Further accessories may be found at the price list for Beckhoff fieldbus components and at the internet under https://www.beckhoff.com

EP23xx

6.3 Version identification of EtherCAT devices

Designation

A Beckhoff EtherCAT device has a 14-digit designation, made up of

- · family key
- · type
- · version
- · revision

Example	Family	Туре	Version	Revision
EL3314-0000-0016	EL terminal (12 mm, non- pluggable connection level)	3314 (4-channel thermocouple terminal)	0000 (basic type)	0016
ES3602-0010-0017	ES terminal (12 mm, pluggable connection level)		0010 (high- precision version)	0017
CU2008-0000-0000	CU device	2008 (8-port fast ethernet switch)	0000 (basic type)	0000

Notes

- The elements mentioned above result in the **technical designation**. EL3314-0000-0016 is used in the example below.
- EL3314-0000 is the order identifier, in the case of "-0000" usually abbreviated to EL3314. "-0016" is the EtherCAT revision.
- · The order identifier is made up of
 - family key (EL, EP, CU, ES, KL, CX, etc.)
 - type (3314)
 - version (-0000)
- The **revision** -0016 shows the technical progress, such as the extension of features with regard to the EtherCAT communication, and is managed by Beckhoff.
 - In principle, a device with a higher revision can replace a device with a lower revision, unless specified otherwise, e.g. in the documentation.
 - Associated and synonymous with each revision there is usually a description (ESI, EtherCAT Slave Information) in the form of an XML file, which is available for download from the Beckhoff web site. From 2014/01 the revision is shown on the outside of the IP20 terminals, see Fig. "EL5021 EL terminal, standard IP20 IO device with batch number and revision ID (since 2014/01)".
- The type, version and revision are read as decimal numbers, even if they are technically saved in hexadecimal.

Identification number

Beckhoff EtherCAT devices from the different lines have different kinds of identification numbers:

Production lot/batch number/serial number/date code/D number

The serial number for Beckhoff IO devices is usually the 8-digit number printed on the device or on a sticker. The serial number indicates the configuration in delivery state and therefore refers to a whole production batch, without distinguishing the individual modules of a batch.

Structure of the serial number: KK YY FF HH

KK - week of production (CW, calendar week)

YY - year of production

FF - firmware version

HH - hardware version

Example with

Ser. no.: 12063A02: 12 - production week 12 06 - production year 2006 3A - firmware version 3A 02 - hardware version 02

Exceptions can occur in the **IP67 area**, where the following syntax can be used (see respective device documentation):

Syntax: D ww yy x y z u

D - prefix designation ww - calendar week

yy - year

- x firmware version of the bus PCB
- y hardware version of the bus PCB
- z firmware version of the I/O PCB
- u hardware version of the I/O PCB

Example: D.22081501 calendar week 22 of the year 2008 firmware version of bus PCB: 1 hardware version of bus PCB: 5 firmware version of I/O PCB: 0 (no firmware necessary for this PCB) hardware version of I/O PCB: 1

Unique serial number/ID, ID number

In addition, in some series each individual module has its own unique serial number.

See also the further documentation in the area

- IP67: EtherCAT Box
- Safety: <u>TwinSafe</u>
- · Terminals with factory calibration certificate and other measuring terminals

Examples of markings

Fig. 41: EL5021 EL terminal, standard IP20 IO device with serial/ batch number and revision ID (since 2014/01)

Fig. 42: EK1100 EtherCAT coupler, standard IP20 IO device with serial/ batch number

Fig. 43: CU2016 switch with serial/ batch number



Fig. 44: EL3202-0020 with serial/ batch number 26131006 and unique ID-number 204418

Fig. 45: EP1258-00001 IP67 EtherCAT Box with batch number/ date code 22090101 and unique serial number 158102

Fig. 46: EP1908-0002 IP67 EtherCAT Safety Box with batch number/ date code 071201FF and unique serial number 00346070

Fig. 47: EL2904 IP20 safety terminal with batch number/ date code 50110302 and unique serial number 00331701

Fig. 48: ELM3604-0002 terminal with unique ID number (QR code) 100001051 and serial/ batch number 44160201

6.3.1 Beckhoff Identification Code (BIC)

The Beckhoff Identification Code (BIC) is increasingly being applied to Beckhoff products to uniquely identify the product. The BIC is represented as a Data Matrix Code (DMC, code scheme ECC200), the content is based on the ANSI standard MH10.8.2-2016.

Fig. 49: BIC as data matrix code (DMC, code scheme ECC200)

The BIC will be introduced step by step across all product groups.

Depending on the product, it can be found in the following places:

- · on the packaging unit
- · directly on the product (if space suffices)
- · on the packaging unit and the product

The BIC is machine-readable and contains information that can also be used by the customer for handling and product management.

Each piece of information can be uniquely identified using the so-called data identifier (ANSI MH10.8.2-2016). The data identifier is followed by a character string. Both together have a maximum length according to the table below. If the information is shorter, spaces are added to it. The data under positions 1 to 4 are always available.

The following information is contained:

Item no.	Type of information	Explanation	Data identifier	Number of digits incl. data identifier	Example
1	Beckhoff order number	Beckhoff order number	1P	8	1P072222
2	Beckhoff Traceability Number (BTN)	Unique serial number, see note below	S	12	SBTNk4p562d7
3	Article description	Beckhoff article description, e.g. EL1008	1K	32	1KEL1809
4	Quantity	Quantity in packaging unit, e.g. 1, 10, etc.	Q	6	Q1
5	Batch number	Optional: Year and week of production	2P	14	2P401503180016
6	ID/serial number	Optional: Present-day serial number system, e.g. with safety products	51S	12	51S 678294104
7	Variant number	Optional: Product variant number on the basis of standard products	30P	32	30PF971, 2*K183

Further types of information and data identifiers are used by Beckhoff and serve internal processes.

Structure of the BIC

Example of composite information from item 1 to 4 and 6. The data identifiers are marked in red for better display:

BTN

An important component of the BIC is the Beckhoff Traceability Number (BTN, item no. 2). The BTN is a unique serial number consisting of eight characters that will replace all other serial number systems at Beckhoff in the long term (e.g. batch designations on IO components, previous serial number range for safety products, etc.). The BTN will also be introduced step by step, so it may happen that the BTN is not yet coded in the BIC.

NOTE

This information has been carefully prepared. However, the procedure described is constantly being further developed. We reserve the right to revise and change procedures and documentation at any time and without prior notice. No claims for changes can be made from the information, illustrations and descriptions in this information.

6.4 Support and Service

Beckhoff and their partners around the world offer comprehensive support and service, making available fast and competent assistance with all questions related to Beckhoff products and system solutions.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for <u>local support and service</u> on Beckhoff products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on her internet pages:

http://www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

Huelshorstweg 20 33415 Verl Germany

Phone: +49 5246 963 0
Fax: +49 5246 963 198
e-mail: info@beckhoff.com

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application of individual Beckhoff products, but also with other, wide-ranging services:

- support
- design, programming and commissioning of complex automation systems
- · and extensive training program for Beckhoff system components

Hotline: +49 5246 963 157
Fax: +49 5246 963 9157
e-mail: support@beckhoff.com

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

- · on-site service
- · repair service
- · spare parts service
- · hotline service

Hotline: +49 5246 963 460 Fax: +49 5246 963 479 e-mail: service@beckhoff.com

List of figures

Fig. 1	EtherCAT Box Modules within an EtherCAT network	8
Fig. 2	EtherCAT Box with M8 connections for sensors/actuators	S
Fig. 3	EtherCAT Box with M12 connections for sensors/actuators	Ĝ
Fig. 4	EP2308, EP2318, EP2328	11
Fig. 5	EP2316-0003	14
Fig. 6	EP2316-0008	15
Fig. 7	EP2316-0008 - Status LEDs	17
Fig. 8	EP2338-x00x	21
Fig. 9	EP2339-0003	25
Fig. 10	EP2339-0003 - Process image	27
Fig. 11	EP2339-0021	29
Fig. 12	EP2339-0022	30
Fig. 13	EP2339-0042	33
Fig. 14	EP2349-0021	36
Fig. 15	EP2349-0022	36
Fig. 16	Dimensions	40
Fig. 17	Dimensions	41
Fig. 18	Dimensions	42
Fig. 19	Mounting Rail ZS5300-000	43
Fig. 20	Functional earth via the fastening holes	44
Fig. 21	Status LEDs for the supply voltages	50
Fig. 22	Digital outputs M8 and M12	52
Fig. 23	Digital inputs M8 and M12	53
Fig. 24	Digital inputs/outputs M8	54
Fig. 25	Digital inputs/outputs M12	54
Fig. 26	Digital inputs/outputs M12	55
Fig. 27	Digital inputs ZS2001, 8 channels	56
Fig. 28	Digital outputs ZS2001, 8 channels	56
Fig. 29	ZS2001-0001, ZS2001-0002: KM connectors for single wire connection	57
Fig. 30	ZS2001-0004: KM connectors for three-wire connection	57
Fig. 31	Digital inputs and outputs D-sub 25	59
Fig. 32	UL label	60
Fig. 33	BG2000 - putting the cables	62
Fig. 34	BG2000 - fixing the cables	63
Fig. 35	BG2000 - mounting the protection enclosure	63
Fig. 36	Switch-off of inductive loads	64
Fig. 37	EP2316-0008 - 8000:0 - DIG Safe state active Ch.1	66
Fig. 38	EP2316-0008 - F800:0 - DO Settings (Safe State Value)	67
Fig. 39	Selecting the Restore default parameters PDO	68
Fig. 40	Entering a restore value in the Set Value dialog	68
Fig. 41	EL5021 EL terminal, standard IP20 IO device with serial/ batch number and revision ID (since 2014/01)	73
Fig. 42	EK1100 EtherCAT coupler, standard IP20 IO device with serial/ batch number	74
Fig. 43	CU2016 switch with serial/ batch number	74
-		

Fig. 44	EL3202-0020 with serial/ batch number 26131006 and unique ID-number 204418	74
Fig. 45	EP1258-00001 IP67 EtherCAT Box with batch number/ date code 22090101 and unique serial number 158102	75
Fig. 46	EP1908-0002 IP67 EtherCAT Safety Box with batch number/ date code 071201FF and unique serial number 00346070	75
Fig. 47	EL2904 IP20 safety terminal with batch number/ date code 50110302 and unique serial number 00331701	75
Fig. 48	ELM3604-0002 terminal with unique ID number (QR code) 100001051 and serial/ batch number 44160201	75
Fia. 49	BIC as data matrix code (DMC, code scheme ECC200)	76